Skip to main content
Log in

Thermally stable nanomultilayer films of Cu/Mo

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thermal decomposition of nanoscaled (5, 50, and 100 nm) multilayer films has been studied in an immiscible Cu and Mo system. While the onset of nanolayer instability is by thermal grooving at elevated temperatures, the entire nanomultilayer film decomposition can be differentiated into three distinct stages, over a range of temperatures (848 to 1073 K). Stage I is characterized by the onset of grooves, which appear as minor perturbations in otherwise flat interfaces. This is followed by the occurrence of prominent grooves in stage II. Stage III consists of a complete breakdown of the layered structure, with the microstructure composed of grains of Cu and Mo. However, a good layer stability was observed in some of these nanomultilayers (50 Mo:5 Cu and 5 Mo:5 Cu), and stage II is retained up to long times at elevated temperatures. This is attributed to the large difference in the individual layer melting temperatures, combined with unequal film thickness (and hence volume fractions), which inhibits the attainment of an equilibrium groove configuration, up to extended periods of time. Analytical models for thermal grooving in bulk polycrystalline materials were applied to the case of thin film nanomultilayers. The predicted instability kinetics were found to corroborate with the experimentally observed stability of the nanomultilayers, except at very small size ranges (5 nm). A methodology for generating stable nanomultilayer films is suggested as an outcome of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Set of overview articles in Mechanical Behaviour of Nanostructured Materials, H. Kung and T. Foecke, eds., MRS Bull. Feb. 1999.

  2. G.S. Was and T. Foecke: Thin Solid Films, 1996, vol. 286, pp. 1–31.

    Article  CAS  Google Scholar 

  3. H. Holleck and V. Schier: Surf. Coating Technol., 1995, vol. 76/77, pp. 328–36.

    Article  Google Scholar 

  4. A. Gavens, D. Van Heerden, T. Foecke, and T.P. Weihs: Metall. Mater. Trans., 1999, vol. 30A (11), pp. 2959–66.

    Article  CAS  Google Scholar 

  5. P.C. Yashar and W. Sproul: Vacuum, 1999, vol. 55, pp. 179–90.

    Article  CAS  Google Scholar 

  6. U. Wilkund, P. Hedenqvist, and S. Hogmark: Surf. Coating Technol., 1997, vol. 97, pp. 773–78.

    Article  Google Scholar 

  7. F. Giron, P. Boher, Ph. Houdy, F. Pierre, P. Beauvillian, C. Chappert, K. Le Dang, and P. Veillet: J. Appl. Phys., 1990, vol. 72 (10), pp. 4710–13.

    Article  Google Scholar 

  8. P. Grunberg: Acta Mater., 2000, vol. 48, pp. 239–51.

    Article  CAS  Google Scholar 

  9. J. Ferré, G. Pénissard, C. Marlière, D. Renard, P. Beauvillain, and J.P. Renard: Appl. Phys. Lett., 1990, vol. 56 (16), pp. 1588–90.

    Article  Google Scholar 

  10. A. Barthélémy, A. Fert, M.N. Baibich, S. Hadjoudj, and F. Petroff: J. Appl. Phys., 1990, vol. 67 (9), pp. 5908–13.

    Article  Google Scholar 

  11. E. Spiller: SPIE, 1985, vol. 563, pp. 135–41.

    Google Scholar 

  12. R.J. Heathcote, G.R. Odette, G.E. Lucas, and R.G. Rowe: Mater. Res. Soc. Symp. Proc., 1996, vol. 434, pp. 101–12.

    CAS  Google Scholar 

  13. J. Mckeown, A. Misra, H. Kung, R.G. Hoagland, and M. Natasi: Scripta Metall, 2002, vol. 46, pp. 593–98.

    Article  CAS  Google Scholar 

  14. H. Knoeder, G.E. Lucas, and C.G. Levi: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1043–54.

    Article  Google Scholar 

  15. M. Bobeth, R. Krawietz, H. Mai, W. Pompe, A. Seqing, and J. Thomas: Solid State Ionics, 1997, vols. 101–103, pp. 279–84.

    Google Scholar 

  16. H.J. Lee, K.W. Kwon, C. Ryu, and R. Sinclair: Acta Mater., 1999, vol. 47 (15), pp. 3965–75.

    Article  CAS  Google Scholar 

  17. N. Mara, A. Sergueeva, A. Misra, and A.K. Mukherjee: Scripta Metall, 2004, vol. 50, pp. 803–06.

    Article  CAS  Google Scholar 

  18. A. Ullrich, M. Bobeth, and W. Pompe: Scripta Mater., 2000, vol. 43, pp. 887–92.

    Article  CAS  Google Scholar 

  19. A.C. Lewis, D. Josell, and T.P. Weihs: Scripta Mater., 2003, vol. 48, pp. 1079–85.

    Article  CAS  Google Scholar 

  20. D. Josell and F. Spaepen: Acta Metall. Mater., 1993, vol. 41, pp. 3017–27.

    Article  CAS  Google Scholar 

  21. D. Josell and F. Spaepen: MRS Bull., 1999, vol. 24, pp. 39–43.

    CAS  Google Scholar 

  22. D. Jossell, W.C. Carter, and J.E. Bonevich: Nanostr. Mater., 1999, vol. 12, pp. 1987–99.

    Google Scholar 

  23. A.R. Miedema: Z. Metallkde, 1978, vol. 69, pp. 456–61.

    Google Scholar 

  24. A.R. Miedema and F.J.A. den Broeder: Z. Metallkd., 1979, vol. 70, pp. 14–20.

    CAS  Google Scholar 

  25. L.E. Murr: Interfacial Phenomena in Metals and Alloys, Addison-Wessley Publication Company, New York, NY, 1975, pp. 1–9.

    Google Scholar 

  26. W.W. Mullins: J. Appl. Phys., 1957, vol. 28 (3), pp. 333–39.

    Article  CAS  Google Scholar 

  27. W.W. Mullins and P.G. Shewmon: Acta Metall., 1959, vol. 17, pp. 163–70.

    Google Scholar 

  28. G. Ramnath, H.Z. Xiao, L.C. Yang, A. Fiockett, and L.H. Allen: J. Appl. Phys., 1995, vol. 78, pp. 2435–40.

    Article  Google Scholar 

  29. T. Surholt and C.H.R. Herzig: Acta Mater., 1997, vol. 45, pp. 3817–23.

    Article  CAS  Google Scholar 

  30. A. Kuper, H. Letaw, Jr., L. Slifkin, E. Sonder, and C.T. Tomizuka: Phys. Rev., 1954, vol. 96, pp. 1224–25.

    Article  CAS  Google Scholar 

  31. Smithells Metals Reference Book, E.A. Brandes and G.B. Brooks, eds., 1998, pp. 11–13.

  32. B.C. Allen: Metall. Trans., 1972, vol. 3, pp. 2544–47.

    CAS  Google Scholar 

  33. W.W. Mullins: Acta Metall., 1958, vol. 6, pp. 414–27.

    Article  Google Scholar 

  34. A. Gangulee: J. Appl. Phys., 1974, vol. 45, pp. 3749–56.

    Article  CAS  Google Scholar 

  35. D. Srinivasan and P.R. Subramanian: unpublished research.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasan, D., Sanyal, S., Corderman, R. et al. Thermally stable nanomultilayer films of Cu/Mo. Metall Mater Trans A 37, 995–1003 (2006). https://doi.org/10.1007/s11661-006-0072-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0072-4

Keywords

Navigation