Skip to main content
Log in

The effect of fluid flow on eutectic growth

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of fluid flow on eutectic microstructure is systematically examined in Al-Cu alloys of compositions varying from 19.5 to 45.0 wt pct Cu. It is shown that significantly different fluid-flow effects are present in hypo- and hypereutectic alloys, since the modes of convection are different in these two cases. In hypoeutectic alloys, the rejected solute is copper, which is heavier than aluminum, and fluid flow gives rise to radial solute segregation in cylindrical samples. In hypereutectic alloys, a lighter aluminum is rejected that causes a double diffusive convection and gives rise to macrosegregation. These composition variations are shown to produce nonuniform microstructures that vary either radially (in hypoeutectic alloys) or axially (in hypereutectic alloys) and can give rise to a single phase-to-eutectic, lamellar-to-rod eutectic, or rod-to-lamellar eutectic transition in a given sample. Composition measurements are carried out to characterize solute segregation due to fluid flow. The fluid-flow effect on eutectic spacing in eutectic or near-eutectic alloys is found to be very small, whereas it increases the eutectic spacing in hypoeutectic alloys for a given local composition and it can increase or decrease the spacing in hypereutectic alloys, depending on the microstructure and solidification fraction. Theoretical models, based on diffusive grwoth, are modified to predict the spatio-temporal variation in eutectic microstructure caused by fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Walker, J.H. Lee, S. Liu, and R. Trivedi: unpublished research.

  2. B. Drevet, D. Camel, and J.J. Favier: Proc. 8th Eur. Symp. on Materials and Fluid Sciences in Microgravity, Oxford, United Kingdom, European Space Agency, Paris, 1989, pp. 101–08.

    Google Scholar 

  3. P.A. Curreri, D.J. Larson, and D.M. Stefanescu: Solidification Processing of Eutectic Alloys, D.M. Stefanescu, G.J. Abbaschian, and B.J. Bayuzick, eds., TMS, Warrendale, PA, 1988, pp. 47–64.

    Google Scholar 

  4. R. Trivedi, P. Mazumder, and S.N. Tewari: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3763–75.

    CAS  Google Scholar 

  5. R. Trivedi, H. Miyahara, P. Mazumder, E. Simsek, and S.N. Tewari: J. Cryst. Growth, 2001, vol. 222, pp. 365–79.

    Article  CAS  Google Scholar 

  6. R. Trivedi, S. Liu, P. Mazumder, and E. Simsek: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 309–20.

    Article  CAS  Google Scholar 

  7. J-H. Lee, Shan Liu, H. Miyahara, and R. Trivedi: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 909–17.

    CAS  Google Scholar 

  8. Binary Alloy Phase Diagram, 2nd ed., T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, eds., ASM INTERNATIONAL, Materials Park, OH, 1990, pp. 141–43.

    Google Scholar 

  9. P. Mazumder and R. Trivedi: Appl. Math., 2003, vol. 28, pp. 109–25.

    Google Scholar 

  10. C. Le Marek, R. Guerin, and P. Haldenwag: J. Cryst. Growth, 1996, vol. 169, pp. 147–56.

    Article  Google Scholar 

  11. S.R. Coriell, M.R. Cordes, W.J. Boettinger, and R.F. Sekerka: J. Cryst. Growth, 1980, vol. 49, pp. 13–28.

    Article  CAS  Google Scholar 

  12. J.N. Clark and R. Elliot: Metall. Trans. A, 1976, vol. 7A, pp. 1197–1202.

    CAS  Google Scholar 

  13. D.J.S. Cooksey, D. Munson, M.P. Wilkinson, and A. Hellawell: Phil. Mag., 1964, vol. 10, pp. 745–69.

    CAS  Google Scholar 

  14. G.A. Chadwick: J. Inst. Met., 1963, vol. 92, pp. 18–20.

    Google Scholar 

  15. A. Moore and R. Elliot: J. Inst. Met., 1967, vol. 95, pp. 369–72.

    CAS  Google Scholar 

  16. J.D. Livingston, H.E. Cline, E.F. Koch, and R.R. Russell: Acta Metall., 1970, vol. 18, pp. 399–404.

    Article  CAS  Google Scholar 

  17. K. Jackson and J. Hunt: Trans. TMS-AIME, 1966, vol. 236, pp. 1129–42.

    CAS  Google Scholar 

  18. S.K. Seshadri and D.B. Downie: Met. Sci., 1979, vol. 13, pp. 696–99.

    Article  CAS  Google Scholar 

  19. J.H. Lee, S. Liu, and R. Trivedi: Iowa State University, Ames, IA, unpublished work, 2005.

  20. S. Liu, J.H. Lee, D. Enlow, and R. Trivedi: 133rd TMS Annual Meeting: Solidification Processes and Microstructures—A Symp. in Honor of Wilfried Kurz, M. Rappaz, C. Beckermann, and R. Trivedi, eds., TMS, Warrendale, PA, 2004, pp. 257–62.

    Google Scholar 

  21. R. Sharp and A. Hellawell: J. Cryst. Growth, 1969, vol. 5, pp. 155–61.

    Article  CAS  Google Scholar 

  22. R.M. Jordan and J.D. Hunt: Metall. Trans., 1971, vol. 2, pp. 3401–10.

    CAS  Google Scholar 

  23. M. Gunduz and J.D. Hunt: Acta Metall., 1985, vol. 33, pp. 1651–72.

    Article  CAS  Google Scholar 

  24. J.J. Favier and J. De Goer: Results Spacelab 1, ESA SP-222, European Space Agency Special Publications (ESA SP), Paris, 1984, pp. 127–34.

    Google Scholar 

  25. P. Mazumder, R. Trivedi, and A. Karma: Metall. Mater. Trans., 2000, vol. 31A, pp. 1233–46.

    CAS  Google Scholar 

  26. C.M. Klaren, J.D. Verheoven, and R. Trivedi: Metall. Trans. A, 1980, vol. 11A, pp. 1853–61.

    CAS  Google Scholar 

  27. J.T. Mason, J.D. Verhoeven, and R. Trivedi: Metall. Trans. A, 1984, vol. 15A, pp. 1665–76.

    CAS  Google Scholar 

  28. D.H. Kim and R.A. Brown: J. Cryst. Growth, 1991, vol. 114, pp. 411–34.

    Article  CAS  Google Scholar 

  29. R.J. Schaefer and S.R. Coriell: Metall. Trans. A, 1984, vol. 15A, pp. 2109–16.

    CAS  Google Scholar 

  30. J.W. Lu and F. Chen: J. Cryst. Growth, 1996, vol. 171, pp. 601–13.

    Article  Google Scholar 

  31. R. Trivedi and S. Liu: Proc. Int. Conf. on Solidification Science and Processing, B.K. Dhindaw, B.S. Murty, and S. Sen, eds., Science Publishers Inc., Enfield, NH, 2001, pp. 13–24.

    Google Scholar 

  32. J. Chen, S.N. Tewari, G. Magadi, and H.C. De Groh III: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2985–90.

    CAS  Google Scholar 

  33. S. Akamatsu, M. Plapp, G. Faivre, and A. Karma: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1815–28.

    CAS  Google Scholar 

  34. R. Trivedi and W. Kurz: in Solidification Processing of Eutectic Alloys, D.M. Stefanescu, G.J. Abbachian, and B.J. Bayuzick, eds., TMS, Warrendale, PA, 1988, pp. 3–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.H., Liu, S. & Trivedi, R. The effect of fluid flow on eutectic growth. Metall Mater Trans A 36, 3111–3125 (2005). https://doi.org/10.1007/s11661-005-0083-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0083-6

Keywords

Navigation