Skip to main content
Log in

The tensile response of a fine-grained AA5754 alloy produced by asymmetric rolling and annealing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Asymmetric rolling (ASR) followed by annealing has been used to produce very fine grain sizes in the commercial Al-3 wt pct Mg alloy, AA5754. The appropriate rolling and annealing practice can produce grain sizes as small as 1 μm, and the tensile response of this fine-grained material has been compared with that of other fine-grained alloys produced by alternative methods. It is shown that the material obeys a Hall-Petch relationship, with a slope very similar to that of AA5754 produced by equal-channel angular extrusion (ECAE) and by conventional hot and cold rolling. The high yield strengths at fine grain sizes are accompanied by a low tensile elongation, which reflects the stress-strain response of very fine grain sizes. The stress-strain response can be described by the Voce equation, with the dislocation-accumulation rate decreasing with decreasing grain size and the rate of dynamic recovery being controlled by the Mg solute. Tensile elongations generally decrease with decreasing grain size, but a duplex grain structure appears to provide a good compromise between strength and elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ultrafine Grained Materials II, Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, and T.C. Lowe, eds., TMS Warrendale, PA, 2002.

    Google Scholar 

  2. M. Furukawa, Z. Horita, M. Nemoto, and T. Langdon: Mater. Sci. Eng. A., 2002, vol. A324, pp. 82–89.

    Article  Google Scholar 

  3. J.S. Hayes, R. Keyte, and P.B. Prangnell: Mater. Sci. Technol., 2000, vol. 16, pp. 1259–63.

    Article  CAS  Google Scholar 

  4. T. Hebesberger, R. Pippan, and H.P. Stuwe: Ultrafine Grained Materials II, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, and T.C. Lowe, eds., TMS, Warrendale, PA, 2002, pp. 133–40.

    Google Scholar 

  5. Y. Saito, H. Utsunomiya, and T. Sakai: Acta Mater., 1990, vol. 47, pp. 578–83.

    Google Scholar 

  6. C.-H. Choi, K.-H. Kim, and D.N. Lee: Mater. Sci. Forum, 1998, vols. 273–275, pp. 391–96.

    Google Scholar 

  7. Q. Cui and K. Ohari: Mater. Sci. Technol., 2000, vol. 16, pp. 1095–1101.

    CAS  Google Scholar 

  8. D.G. Morris and M.A. Muñoz-Morris: Acta Mater., 2002, vol. 50, pp. 4047–60.

    Article  CAS  Google Scholar 

  9. F.J. Humphreys and M. Hatherly: Recrystallization and Related Amealing Phenomena, Pergamon, Oxford, UK, 1995, pp. 173–216.

    Google Scholar 

  10. G.B. Burger, A.K. Gupta, P.W. Jeffrey, and D.J. Lloyd: Mater. Characterization, 1995, vol. 35, pp. 23–39.

    Article  CAS  Google Scholar 

  11. F.J. Humphreys: Acta Mater., 1997, vol. 45, pp. 5031–39.

    Article  CAS  Google Scholar 

  12. S.A. Court, K.M. Gatenby, and D.J. Lloyd: Mater. Sci. Eng., 2001, vols. A319–A321, pp. 443–47.

    Google Scholar 

  13. B.J. Brindley and P.J. Worthington: Metall. Rev., 1970, vol. 145, pp. 101–14.

    Google Scholar 

  14. W.B. Morrison and R.L. Miller: Ultrafine—Grain Metals, John J. Burke and Volker Weiss eds., Syracuse University Press, Syracuse, NY, 1970, pp. 183–211.

    Google Scholar 

  15. N. Tsuji, Y. Ito, Y. Koizumi, Y. Minamino, and Y. Saito: Ultrafine Grained Materials II, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, and T.C. Lowe, eds., TMS, Warrendale, PA, 2002, pp. 389–97.

    Google Scholar 

  16. D.J. Lloyd: Met. Sci., 1980, vol. 14, pp.193–98.

    CAS  Google Scholar 

  17. R. Mahmudi: Mater. Lett., 1994, vol. 19, pp. 243–46.

    Article  CAS  Google Scholar 

  18. D.J. Lloyd and L.R. Morris: Acta Mater., 1997, vol. 25, pp. 857–61.

    Google Scholar 

  19. D.J. Lloyd, S.A. Court, and K.M. Gatenby: Mater. Sci. Technol., 1997, vol. 13, pp. 660–66.

    CAS  Google Scholar 

  20. H. Conrad: Mater. Sci. Eng., 2003, vol. A341, pp. 216–28.

    Article  Google Scholar 

  21. R.Z. Valiev, N.A. Krasilnikov, and N.K. Tsenev: Mater. Sci. Eng., 1991, vol. A137, pp. 35–40.

    Article  Google Scholar 

  22. M. Furkawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Acta Mater., 1996, vol. 44, pp. 4619–629.

    Article  Google Scholar 

  23. P. Lukac: Mater. Sci. Forum, 1996, vols. 217–222, pp. 71–82.

    Google Scholar 

  24. U.F. Kocks: Trans. ASME, J. Eng. Mater. Technol., 1976, vol. 98, pp. 76–85.

    CAS  Google Scholar 

  25. H. Mecking and U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865–75.

    Article  CAS  Google Scholar 

  26. U.F. Kocks and H. Mecking: Progr. Mater. Sci., 2003, vol. 48, pp. 171–273.

    Article  CAS  Google Scholar 

  27. J.H. Palm: Appl. Sci. Res., Sect. A, 1948, vol. 1, pp. 198–210.

    Article  Google Scholar 

  28. E. Voce: J. Inst. Met., 1948, vol. 74, pp. 537–562.

    CAS  Google Scholar 

  29. D.J. Lloyd, H. Sang, J.D. Embury, P. Wycliffe, and G. LeRoy: Mater. Sci. Eng., 1978, vol. 36, pp. 35–46.

    Article  CAS  Google Scholar 

  30. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.

    CAS  Google Scholar 

  31. H. Conrad: Ultrafine—Grain Metals, John J. Burke and Voker Weiss, eds., Syracuse University Press, Syracuse, NY, 1970, pp. 213–29.

    Google Scholar 

  32. M.F. Ashby: Phil. Mag., 1970, vol. 21, pp. 399–424.

    Article  CAS  Google Scholar 

  33. A. Needleman and J. Gil Sevillano: Scripta Mater., 2003, vol. 48, pp. 109–83.

    Article  CAS  Google Scholar 

  34. D.J. Lloyd and S.A. Court: Mater. Sci. Technol., 2003, vol. 19, pp. 1349–54.

    Article  CAS  Google Scholar 

  35. Y. Estrin and H. Mecking: Elastic-Plastic Failure Modeling of Structures with Applications, D. Hui and T.J. Kozik, eds., ASME, New York, NY, 1988, vol. 141, pp. 181–91.

    Google Scholar 

  36. Y. Estrin and H. Mecking: Acta Metall., 1984, vol. 32, pp. 57–70.

    Article  Google Scholar 

  37. T. Narutani and J. Takamura: Acta Metall., 1991, vol. 39, pp. 2037–49.

    Article  CAS  Google Scholar 

  38. M.H. Shankula, D.J. Lloyd, and J.D. Embury: Acta Metall., 1970, vol. 18, pp. 1293–99.

    Article  Google Scholar 

  39. A.W. Thompson and M.I. Baskes: Phil. Mag., 1973, vol. 28, pp. 301–08.

    Article  CAS  Google Scholar 

  40. D.A. Hughes, N. Hansen, and D.J. Bammann: Scripta Mater., 2003, vol. 48, pp. 147–53.

    Article  CAS  Google Scholar 

  41. Q. Liu, X. Huang, D.J. Lloyd, and N. Hansen: Acta Mater., 2002, vol. 50, pp. 3789–3802.

    Article  CAS  Google Scholar 

  42. A. Considère: Ann. Ponts et Chaussées, 1885, vol. 9, pp. 574–775.

    Google Scholar 

  43. D.J. Lloyd: Scripta Mater., 2003, vol. 48, pp. 341–44.

    Article  CAS  Google Scholar 

  44. M. Legros, B.R. Elliot, M.N. Rittner, J.R. Wertman, and K.J. Hemker: Phil. Mag. A, 2000, vol. 80, pp. 1017–26.

    Article  CAS  Google Scholar 

  45. V.L. Tellkamp, A. Melmed, and E.J. Lavemia: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2335–43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, H., Lloyd, D.J. The tensile response of a fine-grained AA5754 alloy produced by asymmetric rolling and annealing. Metall Mater Trans A 35, 997–1006 (2004). https://doi.org/10.1007/s11661-004-1003-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-1003-x

Keywords

Navigation