Skip to main content

Advertisement

Log in

Mg AZ80/SiC composite bars fabricated by infiltration of porous ceramic preforms

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Semi-industrial samples of Mg AZ80/SiC/50p composites (machined bars with o.d.=80 mm and length=150 mm, having a maximum 2 vol pct of retained porosity) were successfully fabricated by pressureless, low-pressure (under overpressure of about 0.3 MPa) and moderate-pressure (under overpressure of about 0.8 MPa) infiltration. Pressureless infiltration was completed in 24 hours under the flowing atmosphere of nitrogen, whereas the moderate and low-pressure infiltrations were performed under a static atmosphere of pressurized nitrogen for 7 and 0.5 hours, respectively. The composite samples obtained by all applied infiltration paths posessed a homogeneous microstructure and superior mechanical properties as compared to the nonreinforced matrix. Due to the improved productivity of composite fabrication in comparison with the other two infiltration paths investigated in this work, the moderate-pressure infiltration process was recognized as the most competitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kaneko, M. Sugamata, J.S. Kim, and M. Kon: in Magnesium Alloys and Their Applications, K.U. Kainer, ed., Wiley-VCH, Weinheim, 2000, pp. 222–28.

    Google Scholar 

  2. B. Inem: in Inorganic Matrix Composites, M.K. Surappa, ed., TMS, Warrendale, PA, 1996, pp. 41–49.

    Google Scholar 

  3. D.J. Lloyd: Int. Mater. Rev., 1994, vol. 39 (1), pp. 1–23.

    CAS  MathSciNet  Google Scholar 

  4. R.F. Decker: Adv. Mater. Processes, 1998, vol. 154 (3), pp. 31–33.

    CAS  Google Scholar 

  5. V. Laurent, P. Jarry, G. Regazzoni, and D. Apelian: J. Mater. Sci., 1992, vol. 27, pp. 4447–59.

    Article  CAS  Google Scholar 

  6. K. Weiner and M. Lange: Adv. Engin. Mater., 2001, vol. 3 (12), pp. 975–79.

    Article  Google Scholar 

  7. A. Stalmann, W. Sebastian, H. Friedrich, S. Schumann, and K. Droeder: Adv. Eng. Mater., 2001, vol. 3 (12), pp. 969–74.

    Article  CAS  Google Scholar 

  8. H.W. Wagner: in Magnesium Alloys and Their Applications, B.L. Mordike and K.U. Kainer, eds., Werstohf-Informatioongesellschaft, Frankfurt, 1998, pp. 557–62.

    Google Scholar 

  9. K.U. Kainer and A. Tertel: in Metal Matrix Composites-Processing Microstructure and Properties, N. Hansen, D. Juuljensen, T. Leffers, H. Lilholt, T. Lorentzen, A.S. Pedersen, O.B. Pedersen, and B. Ralph, eds., Risø National Laboratory, Roskilde, 1991, pp. 435–40.

    Google Scholar 

  10. R. Oakley, R.F. Cochrane, and R. Stevens: in High Performance Metal and Ceramic Matrix Composites, K. Upadhya, ed., TMS, Warrendale, PA, 1994, pp. 61–72.

    Google Scholar 

  11. J.S.H. Lo and G.J.C. Carpenter: in Metal Matrix Composites and Physical Properties, M.L. Scott, ed., Australian Composite Structures Society, Melbourne, 1997, pp. 689–97.

    Google Scholar 

  12. B.S. Murty, S.K. Thakur, and B.K. Dhindaw: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 319–25.

    Article  CAS  Google Scholar 

  13. M.K.K. Oo, P.S. Ling, and M. Gupta: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1873–81.

    Article  CAS  Google Scholar 

  14. V. Kevorkijan: in Semi-Solid Processing of Alloys and Composites, G.L. Chiarmetta, and M. Rosso eds., Edimet, Brescia, 2000, pp. 837–42.

    Google Scholar 

  15. A. Mortensen: in Comprehensive Composite Materials, A. Kelly and C. Zweben eds., Elsevier, Amsterdam, 2000, vol. 3, pp. 521–55.

    Google Scholar 

  16. M.K. Aghajanian, M.A. Rocazella, J.T. Burke, and S.D. Keck: J. Mater. Sci., 1991, vol. 26, pp. 447–54.

    Article  CAS  Google Scholar 

  17. J.T. Burke, C.C. Yang, and S.J. Canino: in Cast Metal Matrix Composites, D.M. Stefanescu, and S. Sen, eds., AFS, Des Plaines, IL, 1994, pp. 141–51.

    Google Scholar 

  18. J.T. Blucher: J. Mater. Processing Technol., 1992, vol. 30, pp. 381–90.

    Article  Google Scholar 

  19. M.I. Pech-Canul, R.N. Katz, and M.M. Makhlouf: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 565–73.

    Article  CAS  Google Scholar 

  20. M.I. Pech-Canul, R.N. Katz, and M.M. Makhlouf: in State of the Art in Cast MMCs, P.K. Rohatgi, ed., TMS, Warrendale, PA, 2000, pp. 173–88.

    Google Scholar 

  21. P.K. Rohatgi, R.Q. Guo, H. Iksan, E.J. Borchelt, and R. Asthana: Mater. Sci. Engin., 1998, vol. A224, pp. 22–30.

    Article  Google Scholar 

  22. N. Eustathopoulos, M.G. Nicholas, and B. Drevet: Wettability at High Temperatures, Pergamon, Netherlands, 1999.

    Google Scholar 

  23. M.K. Aghajanian, R.A. Langensiepen, M.A. Rocazella, J.T. Leighton, and C.A. Andresson: J. Mater. Sci., 1993, vol. 28, pp. 6683–90.

    Article  CAS  Google Scholar 

  24. R. Asthana: Key Engin. Mater., 1998, vols. 151–152, pp. 351–98.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kevorkijan, V. Mg AZ80/SiC composite bars fabricated by infiltration of porous ceramic preforms. Metall Mater Trans A 35, 707–715 (2004). https://doi.org/10.1007/s11661-004-0381-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0381-4

Keywords

Navigation