Skip to main content
Log in

Ferromagnetic properties of deformation-induced martensite transformation in AISI 304 stainless steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ferromagnetic properties of plastically deformed AISI 304ss have been studied using magnetic hysteresis and Barkhausen emissions methods. The present study has been concentrated on low volume fraction of martensite, i.e., below 58 pct, as compared to the available literature for a higher percentage of martensite. In measured materials, the coercivity increased with deformation and had a tendency to go toward saturation value. A linear increase in remanence with the deformation was observed. A large number of small amplitude of Barkhausen emissions were found at low percentage of martensite, indicating that magnetization rotation took place within a small region. However, large amplitude Barkhausen emissions were observed with the increase of deformations. Angular variation of Barkhausen emissions indicated the formation of rolling texture within the materials. A model has been proposed to explain the results. At the initial stage, small martensite clusters are formed, which grow with the deformation, and the intracluster exchange interaction becomes predominant. With the increase of deformation, martensite volume fraction increases. In this process, existing clusters grow and new clusters are formed. As a result, martensite clusters come closer and intercluster exchange interaction becomes important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.T. Llewellyn: Mater. Sci. Technol., 1997, vol. 13, p. 389.

    CAS  Google Scholar 

  2. F.B. Pickering: Int. Met. Rev., 1976, vol. 211, p. 227.

    Google Scholar 

  3. S.S.M. Tavares, D. Fruchart, and S. Miraglia: J. Alloys Compounds, 2000, vol. 307, p. 311.

    Article  CAS  Google Scholar 

  4. V. Seetharaman and R. Krishnan: J. Mater. Sci., 1981, vol. 16, p. 523.

    Article  CAS  Google Scholar 

  5. E. Manor-Minkovitz and D. Eliezer: Metall. Trans. A, 1990, vol. 21A, pp. 1251–59.

    CAS  Google Scholar 

  6. P. Rozenack and D. Eliezer: Acta Metall., 1987, vol. 35, p. 2329.

    Article  Google Scholar 

  7. H. Kinosita et al.: J. Nucl. Mater, 1996, vol. 239, p. 295.

    Google Scholar 

  8. T. Fukuda, T. Aoki, T. Furuya, A. Hasegawa, and K. Abe: J. Nucl. Mater., 1998, vols. 258–263, p. 1694

    Article  Google Scholar 

  9. W.S. Lee and C.F. Lin: Mater. Sci. Engg., 2001, vol. A308, p. 124.

    Article  CAS  Google Scholar 

  10. P. Heung-Bae, K. Kyung-Mo, and L. Byong-Whi: Int. J. Pressure Vessels Piping, 1996, vol. 68, p. 279.

    Article  Google Scholar 

  11. R. Beltron, J.G. Maldonando, L.E. Murr, and W.W. Fisher: Acta Metall., 1997, vol. 45, p. 4351.

    Google Scholar 

  12. A. Belyakov, T. Sakai, and H. Miura: Mater. Sci. Eng. A, 2001, vols. 319-321, p. 867.

    Article  Google Scholar 

  13. D.T. Llewellyn and J.D. Murray: Proc. Conf. Metallurgical Developments in High Alloy Steels, Scarborough, United Kingdom, The Iron and Steel Institute, 1964, p. 197.

    Google Scholar 

  14. P.L. Mongonon and G. Thomas: Metall. Trans., 1970, vol. 1, pp. 1587–94.

    Google Scholar 

  15. J.P. Eymery, R. Krishnan: J. Magn. Magn. Mater., 1992, vols. 104–107, p. 1785.

    Article  Google Scholar 

  16. J. Diang, H. Hung, P.G. McCormick, and R. Street: J. Magn. Magn. Mater., 1995, vol. 139, p. 109.

    Article  ADS  Google Scholar 

  17. T. Jayakumar, T.D. Koble, W.A. Theiner, and Baldev Raj: Nondestr. Testing Eval., 1993, vol. 10, p. 205.

    Google Scholar 

  18. S.S.M. Tavares, M.R. daSilva, J.M. Neto, S. Miraglia, and D. Fruchart: J. Magn. Magn. Mater., 2002, vols. 242–245, p. 1391.

    Article  Google Scholar 

  19. A. Mitra: J. NDE, 2001, vol. 21, p. 47.

    Google Scholar 

  20. S. Titto: Acta Polytechnica Scandinavica, Applied Physics Series 119, Helsinki, 1977.

  21. R.K. Ray and J.J. Jonas: Int. Mater. Rev., 1990, vol. 35, p. 1.

    Google Scholar 

  22. R. Alben, J.J. Becker, and M.C. Chi: J. Appl. Phys., 1978, vol. 49, p. 1653.

    Article  ADS  CAS  Google Scholar 

  23. P. Mukherjee, P. Barat, T. Jayakumar, P. Kalyanasundaram, C. Rajagopalan, and Baldev Raj: Scripta Met., 1997, vol. 37, p. 1193.

    Article  CAS  Google Scholar 

  24. A. Mitra and S. Palit Sagar: N.B. Manik IEEE Trans. Magn., 2002, vol. 38, p. 3669.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amitava, M., De, P.K., Bhattacharya, D.K. et al. Ferromagnetic properties of deformation-induced martensite transformation in AISI 304 stainless steel. Metall Mater Trans A 35, 599–605 (2004). https://doi.org/10.1007/s11661-004-0371-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0371-6

Keywords

Navigation