Skip to main content
Log in

Effect of reinforcement-particle-orientation anisotropy on the tensile and fatigue behavior of metal-matrix composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of extrusion-induced particle-orientation anisotropy on the mechanical behavior of metal-matrix composites (MMCs) was examined. In this study, we have shown that this anisotropy has a significant influence on the tensile and fatigue behavior SiC particle-reinforced Al alloy composites. The preferred orientation of SiC particles was observed parallel to the extrusion axis, with the extent of orientation being highest for the lowest-volume-fraction composites. The composites exhibited higher Young’s modulus and tensile strength along the longitudinal direction (parallel to the extrusion axis) than in the transverse direction. The extent of anisotropic behavior increased with increasing volume fraction, because of the increasing influence of the SiC reinforcement on the Young’s modulus and tensile properties. The preferred orientation also resulted in anisotropy in the fatigue behavior of the composite material. The trends mirrored those observed in tension, with higher overall fatigue strengths for both orientations and a higher anisotropy with increasing volume fraction of particles. The influence of particle-orientation anisotropy and the resulting tensile and fatigue damage mechanisms is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Chawla and Y.L. Shen: Adv. Eng. Mater., 2001, vol. 3, p. 357.

    Article  CAS  Google Scholar 

  2. N. Chawla and J.E. Allison: in Encyclopedia of Materials: Science and Technology, B. Ilschner and P. Lukas, eds., Elsevier Science, New York, NY, 2001, vol. 3, pp. 2969–74.

    Google Scholar 

  3. D.J. Lloyd: Int. Mater. Rev., 1994, vol. 39, p. 1.

    CAS  Google Scholar 

  4. J. Llorca: Progr. Mater. Sci., 2002, vol. 47, p. 283.

    Article  CAS  Google Scholar 

  5. P.E. Krajewski, J.E. Allison, and J.W. Jones: Metall. Mater. Trans. A, 1993, vol. 24, p. 2731.

    Google Scholar 

  6. J.J. Lewandowski, C. Liu, and W.H. Hunt: Mater. Sci. Eng., 1989, vol. 107, pp. 241–55.

    Article  Google Scholar 

  7. N. Chawla, U. Habel, Y.-L. Shen, C. Andres, J.W. Jones, and J.E. Allison: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 531–40.

    CAS  Google Scholar 

  8. P.M. Mummery, B. Derby, D.J. Buttle, and C.B. Scruby: Proc. Euromat 91, T.W. Clyne and P.J. Withers, eds., Cambridge, United Kingdom, 1993, vol. 2, pp. 441–47.

    Google Scholar 

  9. L.C. Davis, C. Andres, and J.E. Allison: Mater. Sci. Eng., 1998, vol. 249, pp. 40–45.

    Article  Google Scholar 

  10. M. Manoharan and J.J. Lewandowski: Mater. Sci. Eng., 1992, vol. A150, pp. 179–86.

    CAS  Google Scholar 

  11. J. Hall, J.W. Jones, and A. Sachdev: Mater. Sci. Eng., 1994, vol. A183, p. 69.

    Google Scholar 

  12. N.L. Han, Z.G. Wang, and L. Sun: Scripta Metall. Mater., 1995, vol. 33, p. 781.

    Article  CAS  Google Scholar 

  13. A.R. Vaidya and J.J. Lewandowski: Mater. Sci. Eng., 1996, vol. A220, p. 85.

    CAS  Google Scholar 

  14. N. Chawla, C. Andres, J.W. Jones, and J.E. Allison: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2843–54.

    CAS  Google Scholar 

  15. V.J. Michaud: Fundamentals of Metal Matrix Composites, Butterworth-Hinemann, Stoneham, MA, 1993, pp. 3–22.

    Google Scholar 

  16. A.K. Ghosh: Fundamentals of Metal Matrix Composites, Butterworth-Hinemann, Stoneham, MA, 1993, pp. 3–22.

    Google Scholar 

  17. P. Sahoo and M.J. Koczak: Mater. Sci. Eng., 1991, vol. A144, pp. 37–44.

    CAS  Google Scholar 

  18. D.J. Lloyd: in Composites Engineering Handbook, P.K. Mallick, ed., Marcel Dekker, New York, NY, 1997, pp. 631–70.

    Google Scholar 

  19. N. Chawla, J.J. Williams, and R. Saha: J. Light Met., 2003, vol. 2, pp. 215–27.

    Article  Google Scholar 

  20. L.M. Tham, M. Gupta, and L. Cheng: Mater. Sci. Eng., 2002, vol. 326, pp. 355–63.

    Article  Google Scholar 

  21. W.A. Logsdon and P.K. Liaw: Eng. Fract. Mech., 1986, vol. 24, pp. 737–51.

    Article  Google Scholar 

  22. H. Jeong, D.K. Hsu, R.E. Shannon, and P.K. Liaw: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 799–809.

    CAS  Google Scholar 

  23. F.J. Humphreys, W.S. Miller, and M.R. Djazeb: Mater. Sci. Technol., 1990, vol. 6, pp. 1157–66.

    CAS  Google Scholar 

  24. A. Borbely, H. Biermann, and O. Hartmann: Mater. Sci. Eng., 2001, vol. 313, p. 34.

    Article  Google Scholar 

  25. J.J. Williams, G. Piotrowski, R. Saha, and N. Chawla: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3861–69.

    CAS  Google Scholar 

  26. G.C. Weatherly and R.B. Nicholson: Phil. Mag., 1968, vol. 17, p. 801.

    CAS  Google Scholar 

  27. R.N. Wilson and P.G. Partridge: Acta Metall., 1965, vol. 13, pp. 1321–27.

    Article  CAS  Google Scholar 

  28. E.A. Starke, Jr., T.H. Sanders, and I.G. Palmer: J. Met., 1981, vol. 8, p. 24.

    Google Scholar 

  29. T. Chrisman, A. Needleman, and S. Suresh: Acta Metall., 1989, vol. 37, p. 3029.

    Article  Google Scholar 

  30. S.V. Kamat, J.P. Hirth, and R. Mehrabian: Acta Metall., 1989, vol. 37, p. 2395.

    Article  CAS  Google Scholar 

  31. V.C. Nardone and K.M. Prewo: Scripta Metall., 1986, vol. 20, p. 43.

    Article  CAS  Google Scholar 

  32. V.C. Nardone: Scripta Metall., 1987, vol. 21, p. 1313.

    Article  CAS  Google Scholar 

  33. M. Vogelsang, R.J. Arsenault, and R.M. Fisher: Metall. Trans. A, 1986, vol. 17A, pp. 379–89.

    CAS  Google Scholar 

  34. R.J. Arsenault and N. Shi: Mater. Sci. Eng., 1986, vol. 81, p. 175.

    Article  CAS  Google Scholar 

  35. S. Suresh and K.K. Chawla: in Fundamentals of Metal Matrix Composites, S. Suresh, A. Mortensen, and A. Needleman, eds., Butterworth-Heinemann, London, 1993, pp. 119–36.

    Google Scholar 

  36. K.K. Chawla, A.H. Esmaeili, A.K. Datye, and A.K. Vasudevan: Scripta Metall. Mater., 1991, vol. 25, pp. 1315–19.

    Article  CAS  Google Scholar 

  37. P.M. Singh and J.J. Lewandowski: Metall. Trans. A, 1993, vol. 24A, pp. 2531–43.

    CAS  Google Scholar 

  38. N. Chawla, L.C. Davis, C. Andres, J.F. Allison, and J.W. Jones: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 951–57.

    Article  CAS  Google Scholar 

  39. J.J. Williams, N. Chawla, and R.J. Fields: unpublished work, Arizona State University, Tempe, AZ, 2003.

    Google Scholar 

  40. J. Hall, J.W. Jones, and A. Sachdev: Mater. Sci. Eng. A, 1994, vol. A183, p. 69.

    Google Scholar 

  41. C. Calabrese and C. Laird: Mater. Sci. Eng., 1974, pp. 141–57.

  42. C. Calabrese and C. Laird: Mater. Sci. Eng., 1974, pp. 159–74.

  43. G.M. Vyletel, J.E. Allison, and D.C. Van Aken: Metall. Mater. Trans. A, 1995, vol. 26A, p. 3143.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganesh, V.V., Chawla, N. Effect of reinforcement-particle-orientation anisotropy on the tensile and fatigue behavior of metal-matrix composites. Metall Mater Trans A 35, 53–61 (2004). https://doi.org/10.1007/s11661-004-0108-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0108-6

Keywords

Navigation