Skip to main content
Log in

The influences of multiscale-sized second-phase particles on ductility of aged aluminum alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Commercially aged aluminum alloys commonly contain second-phase particles of three class sizes, and all contribute appreciably to the mechanical properties observed at the macroscopic scale. In this article, a multiscale model was constructed to describe the individual and coupling influences of the three types of second-phase particles on tensile ductility. The nonlinear relationships between the parameters of particles, including volume fraction, size, aspect ratio, shape, and ductility, were then quantitatively established and experimentally validated by the measured results from disc-shaped precipitate containing Al-Cu-Mg alloys and needle-shaped precipitate containing Al-Mg-Si alloys, as well as by using other researchers’ previously published results. In addition, we discuss extending this model to predict the fracture toughness of aluminum alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.E. King, G. Campbell, T. Gonis, G. Henshall, D. Lesuer, E. Zywicz, and S. Foiles: Mater. Sci. Eng. A, 1995, vol. A191, pp. 1–16.

    CAS  Google Scholar 

  2. G.H. Campbell, S.M. Foiles, H. Huang, D.A. Hughes, W.E. King, D.H. Lassila, D.J. Nikkel, T.D. Rubia, J.Y. Shu, and V.P. Smyshlyaev: Mater. Sci. Eng. A, 1998, vol. A251, pp. 1–22.

    CAS  Google Scholar 

  3. A.M. Gokhale and S. Yang: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2369–81.

    Article  CAS  Google Scholar 

  4. Z. Xia, W.A. Curtin, and P.W.M. Peters: Acta Mater., 2001, vol. 49, pp. 273–87.

    Article  CAS  Google Scholar 

  5. G.T. Hahn and A.R. Rosenfield: Metall. Metall. Trans. A, 1975, vol. 6A, pp. 653–68.

    CAS  Google Scholar 

  6. D.S. Thompson: Metall. Trans. A, 1975, vol. 6A, pp. 671–83.

    CAS  Google Scholar 

  7. D. Broek: Eng. Fract. Mech., 1973, vol. 5, pp. 55–66.

    Article  CAS  Google Scholar 

  8. R.H. Van Stone, T.B. Cox, J.R. Low, JR., and J.A. Psioda: Int. Met. Rev., 1985, vol. 30, pp. 157–79.

    Google Scholar 

  9. K.V. Jata and E.A. Starke, Jr.: Metall. Trans. A, 1986, vol. 17A, pp. 1011–26.

    CAS  Google Scholar 

  10. G.G. Garrett and J.F. Knott: Metall. Trans. A, 1978, vol. 9A, pp. 1187–200.

    CAS  Google Scholar 

  11. C.Q. Chen and J.F. Knott: Met. Sci., 1981, vol. 15, pp. 357–64.

    Article  CAS  Google Scholar 

  12. M. Nakai and T. Eto: Mater. Sci. Eng. A, 2000, vol. A285, pp. 62–68.

    CAS  Google Scholar 

  13. J.G. Kaufman, P.E. Schilling, and F.G. Nelson: Met. Eng. Q., 1969, vol. 9, pp. 39–47.

    Google Scholar 

  14. J.T. Staley: ASTM STP605, ASTM, Philadelphia, PA, 1975, pp. 71–103.

    Google Scholar 

  15. J.M. Dowling and J.W. Martin: Acta Metall., 1976, vol. 24, pp. 1147–53.

    Article  CAS  Google Scholar 

  16. K.C. Prince and J.W. Martin: Acta Metall., 1979, vol. 27, pp. 1401–08.

    Article  CAS  Google Scholar 

  17. J.A. Blind and J.W. Martin: Mater. Sci. Eng., 1983, vol. 57, pp. 49–54.

    Article  CAS  Google Scholar 

  18. J.A. Walsh, K.V. Jata, and E.A. Starke, Jr.: Acta Metall., 1989, vol. 37, pp. 2861–71.

    Article  CAS  Google Scholar 

  19. N.A. Fleck and J.W. Hutchinson: J. Mech. Phys. Solids, 1993, vol. 41, pp. 1825–57.

    Article  Google Scholar 

  20. H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson: J. Mech. Phys. Solids, 1999, vol. 47, pp. 1239–63.

    Article  Google Scholar 

  21. S.J. Zhou and W.A. Curtin: Acta Metall. Mater., 1995, vol. 43, pp. 3093–104.

    Article  CAS  Google Scholar 

  22. A. Tewari, A.M. Gokhale, and R.M. German: Acta Mater., 1999, vol. 47, pp. 3721–34.

    Article  CAS  Google Scholar 

  23. G. Liu, G.J. Zhang, X.D. Ding, J. Sun, and K.H. Chen: Mater. Sci. Eng. A, 2003, vol. 344, pp. 113–24.

    Article  Google Scholar 

  24. K.S. Chan: Acta Metall. Mater., 1995, vol. 43, pp. 4325–35.

    Article  CAS  Google Scholar 

  25. J.R. Rice and G.F. Rosengren: J. Mech. Phys. Solids, 1968, vol. 16, pp. 1–12.

    Article  Google Scholar 

  26. J.W. Hutchinson: J. Mech. Phys. Solids, 1968, vol. 16, pp. 13–31.

    Article  Google Scholar 

  27. M.F. Ashby: Phil. Mag., 1970, vol. 21, pp. 399–424.

    CAS  Google Scholar 

  28. L.M. Brown and W.M. Stobbs: Phil. Mag., 1976, vol. 34, pp. 351–72.

    CAS  Google Scholar 

  29. L.M. Russell and M.F. Ashby: Acta Metall., 1970, vol. 18, pp. 891–901.

    Article  CAS  Google Scholar 

  30. J. Gurland: in Quantitative Microscopy, R.T. DeHoff and F.N. Rhines, eds., McGraw-Hill, New York, NY, 1968, p. 279.

    Google Scholar 

  31. J.W. Cahn and J. Nutting: Trans. ASME, 1959, vol. 215, p. 526.

    CAS  Google Scholar 

  32. J.D. Edington: Practical Electron Microscopy in Materials Science, Van Nostrand Reinhold Company, London, 1976, p. 207.

    Google Scholar 

  33. T.H. Sanders, Jr. and E.A. Starke, Jr.: Metall. Trans. A, 1976, vol. 7A, pp. 1407–18.

    CAS  Google Scholar 

  34. T. Kawabata and O. Izumi: Acta Metall., 1981, vol. 29, pp. 229–39.

    Article  CAS  Google Scholar 

  35. G. Lütjering and A. Gysler: in Aluminum Alloys: Their Physical and Mechanical Properties, E.A. Starke, Jr. and T.H. Sanders, Jr., eds., E.M.A.S. West Midlands, England, 1986, p. 1547.

    Google Scholar 

  36. J.R. Low, Jr.: Eng. Fract. Mech., 1968, vol. 1, pp. 47–53.

    Article  CAS  Google Scholar 

  37. R.H. Van Stone, T.B. Cox, J.R. Low, and J.A. Psioda: Int. Met. Rev., 1985, vol. 30, pp. 157–78.

    Google Scholar 

  38. S.H. Goods and L.M. Brown: Acta Metall., 1979, vol. 27, pp. 1–15.

    Article  CAS  Google Scholar 

  39. B.I. Edelson and W.M. Baldwin, Jr.: Trans. ASM, 1962, vol. 55, p. 230.

    CAS  Google Scholar 

  40. P.F. Thomason: J. Inst. Met., 1968, vol. 96, p. 360.

    Google Scholar 

  41. K. Komori: Acta Mater., 1999, vol. 47, pp. 3069–77.

    Article  CAS  Google Scholar 

  42. S.E. Urreta, F. Louchet, and A. Ghilarducci: Mater. Sci. Eng. A, 2001, vol. A302, pp. 300–07.

    CAS  Google Scholar 

  43. K. Tanaka, T. Mori, and T. Nakamura: Phil. Mag., 1970, vol. 21, pp. 267–79.

    Google Scholar 

  44. J. Sun: Int. J. Fract., 1990, vol. 44, pp. R51–6.

    CAS  Google Scholar 

  45. S.L. Lee and S.T. Wu: Metall. Trans. A, 1986, vol. 17A, pp. 833–41.

    CAS  Google Scholar 

  46. M.A. Zaida and T. Sheppard: Met. Technol., 1984, vol. 11, pp. 313–19.

    Google Scholar 

  47. G.T. Hahn and A.R. Rosenfield: ASTM STP432, ASTM, New York, NY, 1968, pp. 5–32.

    Google Scholar 

  48. D.E. Osborne and J.D. Embury: Metall. Trans., 1974, vol. 4, pp. 2051–61.

    Article  Google Scholar 

  49. W.H. Tai: Mater. Sci. Eng. A, 1989, vol. A123, pp. 205–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Zhang, G.J., Ding, X.D. et al. The influences of multiscale-sized second-phase particles on ductility of aged aluminum alloys. Metall Mater Trans A 35, 1725–1734 (2004). https://doi.org/10.1007/s11661-004-0081-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0081-0

Keywords

Navigation