Skip to main content
Log in

High-strain-rate superplastic behavior of equal-channel angular-pressed 5083 Al-0.2 wt pct Sc

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Tensile tests were carried out at temperatures of 673 to 773 K and strain rates of 1×10−3 to 1 s−1 on an ultrafine-grained (UFG) 5083 Al alloy containing 0.2 wt pct Sc fabricated by equal-channel angular pressing, in order to examine its high-strain-rate superplastic characteristics. The mechanical data for the alloy at 723 and 773 K exhibited a sigmoidal behavior in a double logarithmic plot of the maximum true stress vs true strain rate. The strain-rate sensitivity was 0.25 to 0.3 in the low-(\(\dot \varepsilon \)<5×10−3 s−1) and high- (\(\dot \varepsilon \)>5×10−2 s−1) strain-rate regions, and ∼0.5 in the intermediate-strain-rate region (5×10−3 s−1<\(\dot \varepsilon \)<5 × 10−2 s−1). The maximum elongation to failure of ∼740 pct was obtained at 1×10−2 s−1 and 773 K. By contrast, no sigmoidal behavior was observed at 673 K. Instead, the strain-rate sensitivity of 0.3 was measured in both intermediate-and low-strain-rate regions, but it was about 0.25 in the high-strain-rate region. High-strain-rate superplasticity (HSRS) in the intermediate-strain-rate region at 723 and 773 K was dominated by grain-boundary sliding (GBS) associated with continuous recrystallization and preservation of fine recrystallized grains by second-phase particles. However, the activation energy for HSRS of the present alloy was lower than that predicted for any standard high-temperature deformation mechanism. The low activation energy was likely the result of the not-fully equilibrated microstructure due to the prior severe plastic deformation (SPD). For 673 K, the mechanical data and the microstructural examination revealed that viscous glide was a dominant deformation mechanism in the intermediate- and low-strain-rate regions. Deformation in the high-strain-rate region at all testing temperatures was attributed to dislocation breakaway from solute atmospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, and T.G. Langdon: Acta Mater., 2000, vol. 48, pp. 3633–40.

    Article  CAS  Google Scholar 

  2. I.C. Hisao and J.C. Huang: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1373–84.

    Article  Google Scholar 

  3. K.-T. Park, D.Y. Hwang, S.Y. Chang, and D.H. Shin: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2859–67.

    Article  CAS  Google Scholar 

  4. R.Z. Valiev, D.A. Salimonenko, N.K. Tsenev, P.B. Berbon, and T.G. Langdon: Scripta Mater., 1997, vol. 37, pp. 1945–50.

    Article  CAS  Google Scholar 

  5. I.C. Hisao and J.C. Huang: Scripta Mater., 1999, vol. 40, pp. 697–703.

    Article  Google Scholar 

  6. R.R. Sawtell and C.L. Jensen: Metall. Trans. A, 1990, vol. 21A, pp. 421–30.

    CAS  Google Scholar 

  7. T.G. Nieh, R. Kaibyshev, L.M. Hsiung, N. Nguyen, and J. Wadsworth: Scripta Mater., 1997, vol. 36, pp. 1011–16.

    Article  CAS  Google Scholar 

  8. T.G. Nieh, L.M. Hsiung, J. Wadsworth, and R. Kaibyshev: Acta Mater., 1998, vol. 46, pp. 2789–2800.

    Article  CAS  Google Scholar 

  9. S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, and T.G. Langdon: Acta Mater., 2002, vol. 50, pp. 553–64.

    Article  CAS  Google Scholar 

  10. M. Furukawa, A. Utsunomiya, K. Matsubara, Z. Horita, and T.G. Langdon: Acta Mater., 2001, vol. 49, pp. 3829–38.

    Article  CAS  Google Scholar 

  11. S. Komura, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 707–16.

    Article  CAS  Google Scholar 

  12. H. Akamatsu, T. Fujinami, Z. Horita, and T.G. Langdon: Scripta Mater., 2001, vol. 44, pp. 759–64.

    Article  CAS  Google Scholar 

  13. K.-T. Park, D.Y. Hwang, Y.K. Lee, Y.K. Kim, and D.H. Shin: Mater. Sci. Eng., 2003, vol. A341, pp. 273–81.

    CAS  Google Scholar 

  14. M. Furukawa, P.B. Berbon, Z. Horita, M. Nemoto, N.K. Tsenev, R.Z. Valiev, and T.G. Langdon: Mater. Sci. Forum, 1997, vols. 233–234, pp. 177–84.

    Article  Google Scholar 

  15. V.M. Segal, V.I. Reznikov, A.D. Drobyshevsky, and V.I. Kopylov: Russ. Metall., 1981, vol. 1, pp. 99–105.

    Google Scholar 

  16. V.M. Segal: Mater. Sci. Eng., 1995, vol. A197, pp. 157–64.

    CAS  Google Scholar 

  17. M. Nemoto, Z. Horita, M. Furukawa, and T.G. Langdon: Met. Mater. Int., 1998, vol. 4, pp. 1181–90.

    CAS  Google Scholar 

  18. S. Komura, M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon: Mater. Sci. Eng., 2001, vol. A297, pp. 111–18.

    CAS  Google Scholar 

  19. P.A. Friedman and A.K. Ghosh: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3030–42.

    CAS  Google Scholar 

  20. D.H. Bae and A.K. Ghosh: Acta Mater., 2000, vol. 48, pp. 1207–24.

    Article  CAS  Google Scholar 

  21. R.S. Mishra, R.Z. Valiev, S.X. McFadden, R.K. Islamgaliev, and A.K. Mukherjee: Phil. Mag. A, 2001, vol. 81, pp. 37–48.

    Article  ADS  CAS  Google Scholar 

  22. J.W. Edington: Practical Electron Microscopy in Materials Science IV: Typical Electron Microscope Investigation, Philips, Eindhoven, 1976, pp. 9–15.

    Google Scholar 

  23. R. Verma, A.K. Ghosh, S. Kim, and C. Kim: Mater. Sci. Eng., 1995, vol. A191, pp. 143–50.

    CAS  Google Scholar 

  24. F.A. Mohamed and T.G. Langdon: Phys. Status Solidi, 1976, vol. 33, pp. 375–81.

    Article  CAS  Google Scholar 

  25. F.A. Mohamed, S. Shei, and T.G. Langdon: Acta Metall., 1975, vol. 23, pp. 1443–50.

    Article  CAS  Google Scholar 

  26. J.E. Bird, A.K. Mukherjee, and J.E. Dorn: in Quantitative Relation between Properties and Microstructures, D.G. Brandon and A. Rosen, eds., Israel University Press, Jerusalem, 1969, p. 255.

    Google Scholar 

  27. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, United Kingdom, 1995, p. 92.

    Google Scholar 

  28. O.D. Sherby and P.M. Burke: Progr. Mater. Sci., 1967, vol. 13, pp. 325–90.

    Google Scholar 

  29. S.J. Rothman, N.L. Peterson, L.J. Nowicki, and L.L. Robinson: Phys. Status Solidi (b), 1974, vol. 63, pp. K29-K33.

    CAS  Google Scholar 

  30. P. Yavari and T.G. Langdon: Acta Metall., 1982, vol. 30, pp. 2182–96.

    Google Scholar 

  31. F.A. Mohamed: Mater. Sci. Eng., 1998, vol. A245, pp. 242–56.

    CAS  Google Scholar 

  32. J. Friedel: Dislocations, Pergamon, Oxford, United Kingdom, 1964, pp. 351–67.

    MATH  Google Scholar 

  33. J.T. Evans: Scripta Metall., 1987, vol. 21, pp. 1435–38.

    Article  CAS  Google Scholar 

  34. N. Behnood and J.T. Evans: Acta Metall., 1989, vol. 37, pp. 687–95.

    Article  CAS  Google Scholar 

  35. T.R. McNelley, E.-W. Lee, and M.E. Mills: Metall. Trans. A, 1986, vol. 17A, pp. 1035–41.

    CAS  Google Scholar 

  36. S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev, and A.K. Mukherjee: Nature, 1999, vol. 398, pp. 684–86.

    Article  ADS  CAS  Google Scholar 

  37. Y.R. Kolobov, G.P. Grabovetskaya, M.B. Ivanov, A.P. Zhilyaev, and R.Z. Valiev: Scripta Mater., 2001, vol. 44, pp. 873–78.

    Article  CAS  Google Scholar 

  38. P.K. Chaudhury and F.A. Mohamed: Acta Metall., 1988, vol. 36, pp. 1099–110.

    Article  CAS  Google Scholar 

  39. G. Rai and N.J. Grant: Metall. Trans. A, 1973, vol. 6A, pp. 385–90.

    Google Scholar 

  40. F.A. Mohamed and T.G. Langdon: Phil. Mag., 1975, vol. 32, pp. 687–709.

    Google Scholar 

  41. F.A. Mohamed: J. Mater. Sci., 1983, vol. 18, pp. 582–92.

    Article  Google Scholar 

  42. R.W. Lund and W.D. Nix: Acta Metall., 1976, vol. 24, pp. 469–79.

    Article  CAS  Google Scholar 

  43. W.C. Oliver and W.D. Nix: Acta Metall., 1982, vol. 30, pp. 1335–47.

    Article  Google Scholar 

  44. F.A. Mohamed, K.-T. Park and E.J. Lavernia: Mater. Sci. Eng., 1992, vol. A150, pp. 21–35.

    CAS  Google Scholar 

  45. P. Málek and M. Cieslar: Mater. Sci. Eng., 1997, vols. A234–A236, pp. 782–85.

    Google Scholar 

  46. D.H. Shin, K.-T. Park, and E.J. Lavernia: Mater. Sci. Eng., 1995, vol. 201, pp. 118–26.

    Article  Google Scholar 

  47. S.S. Woo, Y.R. Kim, D.H. Shin, and W.J. Kim: Scripta Mater., 1997, vol. 37, pp. 1351–58.

    Article  CAS  Google Scholar 

  48. E.M. Taleff, G.A. Henshall, T.G. Nieh, D.R. Lesuer, and J. Wadsworth: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1081–91.

    Article  CAS  Google Scholar 

  49. E.W. Hart: Acta Metall., 1967, vol. 15, pp. 351–55.

    Article  CAS  Google Scholar 

  50. F.A. Mohamed: Scripta Metall., 1979, vol. 13, pp. 87–90.

    Article  MathSciNet  Google Scholar 

  51. T.H. Lin, J.P. Hirth, and E.W. Hart: Acta Metall., 1981, vol. 29, pp. 819–27.

    Article  CAS  Google Scholar 

  52. P.K. Koenig and F.A. Mohamed: Mater. Sci. Eng., 1985, vol. 72, pp. L9-L11.

    Article  CAS  Google Scholar 

  53. M. Mostafa and F.A. Mohamed: Metall. Trans. A, 1986, vol. 17A, pp. 365–66.

    CAS  Google Scholar 

  54. E. Taleff, D.R. Lesuer, and J. Wadsworth: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 343–52.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, D.H., Hwang, DY., Oh, YJ. et al. High-strain-rate superplastic behavior of equal-channel angular-pressed 5083 Al-0.2 wt pct Sc. Metall Mater Trans A 35, 825–837 (2004). https://doi.org/10.1007/s11661-004-0009-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0009-8

Keywords

Navigation