Skip to main content
Log in

Phase equilibria of the ternary Al-Cu-Ni system and interfacial reactions of related systems at 800 °C

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A series of Al-Cu-Ni alloys of various compositions were made and annealed at 800 °C. The equilibrium phases were studied by metallography, X-ray diffraction (XRD) analysis, and electron probe microanalysis. The isothermal section of the ternary Al-Cu-Ni system at 800 °C was then determined based on these experimental results and the available phase relationship knowledge of the three constituent binary systems. No ternary compound was found. All three phases, AlNi3, AlNi, and Al3Ni2, have very high ternary solubility, especially the AlNi phase, which almost reaches the binary Al-Cu side. However, no continuous solid solution was formed between the AlNi phase and any of the binary Al-Cu phases. Interfacial reactions of Al/Ni, Al/Cu, Al-Cu/Ni, and Al-Ni/Cu at 800 °C were investigated by using reaction couple techniques. The results showed that Al3Ni and Al3Ni2 phases were formed in the Al/Ni couples; β-AlCu4, γ 1-Al4Cu9, and ɛ 2-Al2Cu3 phases were formed in the Al/Cu couples. As for the results in the Al-2 at. pct Ni/Cu, Al-5 at. pct Ni/Cu, and Al-2 at. pct Cu/Ni, Al-4.5 at. pct Cu/Ni, and Al-6 at. pct Cu/Ni were similar to those in the binary Al/Cu and Al/Ni couples, respectively. A different reaction path was found in the Al-7.5 at. pct Cu/Ni couples, and an AlNi solid solution layer was formed instead of the Al3Ni and Al3Ni2 phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kitahara and A. Hasui: J. Vac. Sci. Technol., 1974, vol. 11 (4), pp. 747–53.

    Article  CAS  Google Scholar 

  2. V.V. Sobolev, J.M. Guilemany, J. Nutting, and J.R. Miquel: Int. Mater. Rev., 1997, vol. 42 (3), pp. 117–36.

    CAS  Google Scholar 

  3. C.R. Austin and A.J. Murphy: J. Inst. Met., 1923, vol. 29 (1), pp. 327–71.

    Google Scholar 

  4. K.E. Bingham and J.L. Haughton: J. Inst. Met., 1923, Vol. 29 (1), pp. 71–115.

    Google Scholar 

  5. W.O. Alexander: J. Inst. Met., 1938, vol. 63, pp. 163–83.

    Google Scholar 

  6. A.J. Bradley and H. Lipson: Proc. R. Soc. London, Ser. A, 1938, vol. 167A, pp. 421–38.

    Google Scholar 

  7. L.S. Castleman and L.L. Seigle: Trans. TMS-AIME, 1957, vol. 209, pp. 1173–74.

    Google Scholar 

  8. M.M.P. Janssen and G.D. Rieck: Trans. AIME, 1967, vol. 239, pp. 1372–85.

    CAS  Google Scholar 

  9. M. Nastasi, L.S. Hung, and J.W. Mayer: Appl. Phys. Lett., 1983, vol. 43 (9), pp. 831–33.

    Article  CAS  Google Scholar 

  10. I. Bertoti, M. Mohai, A. Csanady, P.B. Barna, and H. Berek: Surface Interface Analysis, 1992, vol. 19, pp. 457–63.

    Article  CAS  Google Scholar 

  11. C.-L. Tsao and S.-W. Chen: J. Mater. Sci., 1995, vol. 30, pp. 5215–22.

    Article  CAS  Google Scholar 

  12. Y. Funamizu and K. Watanabe: Trans. JIM, 1971, vol. 12, pp. 147–52.

    CAS  Google Scholar 

  13. A.E. Gershinskii, B.I. Fomin, E.I. Cherepov, and F.L. Edelman: Thin Solid Films, 1977, vol. 42, pp. 269–75.

    Article  CAS  Google Scholar 

  14. S.U. Campisano, E. Costanzo, and F. Scaccianoce: Thin Solid Films, 1978, vol. 52, pp. 97–101.

    Article  CAS  Google Scholar 

  15. K. Rajan and E.R. Wallach: J. Cryst. Growth, 1980, vol. 49, pp. 297–302.

    Article  CAS  Google Scholar 

  16. R.A. Hamm and J.M. Vandenberg: J. Appl. Phys., 1984, vol. 56 (2), pp. 293–99.

    Article  CAS  Google Scholar 

  17. R. Kainuma, M. Ichinose, I. Ohnuma, and K. Ishida: Mater. Sci. Eng. A, 2001, vol. A312, pp. 168–75.

    CAS  Google Scholar 

  18. W.F. Gale and Y. Guan: Metall. Mater. Trans. A, 1997, vol. 27A, pp. 3621–29.

    Google Scholar 

  19. G. Rudolph: Mikrochimica Acta, 1983, vol. Suppl. 10, pp. 241–50.

    Google Scholar 

  20. J.S. Llewelyn Leach: J. Inst. Met., 1963, vol. 92, pp. 93–94.

    Google Scholar 

  21. W. Huang and Y.A. Chang: Intermetallics, 1998, vol. 6, pp. 487–98.

    Article  CAS  Google Scholar 

  22. J.L. Murray: Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, ed., ASM, Materials Park, OH, 1990, pp. 141–43.

    Google Scholar 

  23. Metals Handbook, 9th ed., ASM, Metals Park, OH, 1985, vol. 9.

  24. D.J. Chakrabarti, D.E. Laughlin, S.-W. Chen, and Y.A. Chang: in Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, ed., ASM, Materials Park, OH, 1990, pp. 1442–45.

    Google Scholar 

  25. D.P. Dunne and N.F. Kennon: Met. Forum, 1981, vol. 4 (3), pp. 176–83.

    CAS  Google Scholar 

  26. A.D. Pelton: J. Phase Equilibria, 1995, vol. 16 (6), pp. 501–03.

    CAS  Google Scholar 

  27. L.-H. Su, Y.-W. Yen, C.-C. Lin, and S.-W. Chen: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 927–34.

    Article  CAS  Google Scholar 

  28. H.-T. Luo and S.-W. Chen: J. Mater. Sci., 1996, vol. 31 (19), pp. 5059–67.

    Article  CAS  Google Scholar 

  29. W.D. Hopfe and J.E. Morral: Acta Metall. Mater., 1994, vol. 42 (11), pp. 3887–94.

    Article  CAS  Google Scholar 

  30. J.E. Morral, C. Jin, A. Engström, and J. Ågren: Scripta Mater., 1996, vol. 34 (11), pp. 1661–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CH., Chen, SW., Chang, CH. et al. Phase equilibria of the ternary Al-Cu-Ni system and interfacial reactions of related systems at 800 °C. Metall Mater Trans A 34, 199–209 (2003). https://doi.org/10.1007/s11661-003-0322-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0322-7

Keywords

Navigation