Skip to main content
Log in

Stress-state dependence of cavitation and flow behavior in superplastic aluminum alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A detailed and quantitative investigation of the stress-state dependence of superplastic cavitation in fine-grained aluminum alloys has been carried out to develop clear evidentiary support to build future models. Several stress states, such as uniaxial tension, plane-strain tension, plane-strain compression, shear, and equibiaxial tension have been examined. Tests were carried out to large strain in an interrupted manner under a constant effective strain rate (\(\dot \varepsilon \) e ) in the range of 10−4 to 10−2 s−1. Measurements of volume fraction, population density, and size distribution of cavities, made by image analysis via optical microscopy, show continuous emergence of new cavities as well as growth of cavities during superplastic straining. The total cavity volume fraction (V) increases exponentially with strain. The cavity growth rate, represented by η (equal to d ln V/dε e ), as well as the cavity population evolution rate with strain (dN c / e , where N c is the cavity number/unit area) are found to increase with normalized mean hydrostatic tensile stress (σ m / σ e ). An empirical equation for the biaxial forming limit in terms of the principal surface strains (ε 1 and ε 2) has been defined for a fixed cavity volume, as given by ε 1=a V bα ε 2, where a and b are constants determined from ε 1 values for plane strain (ε 2=0). The value of b is found to be 0.2 to 0.3, and α is 0.4 to 1.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.C. Bampton and J.W. Edington: Metall. Trans. A, 1982, vol. 13A, p. 1721.

    Google Scholar 

  2. J. Pilling and N. Ridley: Acta Metall., 1986, vol. 34, p. 669.

    Article  CAS  Google Scholar 

  3. A.K. Ghosh and C.H. Hamilton: Proc. ICSMA 5, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, United Kingdom, 1980, vol. 2, p. 905.

    Google Scholar 

  4. S.A. Shei and T.G. Langdon: J. Mater. Sci., 1978, vol. 13, p. 1084.

    Article  CAS  Google Scholar 

  5. P.J. Meschter, P.S. Pao, and R.J. Lederich: Scripta Metall., 1984, vol. 18, p. 833.

    Article  CAS  Google Scholar 

  6. N. Ridley: in Superplastic Forming of Structural Alloys, N.E. Paton and C.H. Hamilton, eds., TMS-A, ME, Warrendale, PA, 1982, p. 191.

    Google Scholar 

  7. M.J. Stowell: in Superplastic Forming of Structural Alloys, N.E. Paton and C.H. Hamilton, eds., TMS-A, ME, Warrendale, PA, 1981, p. 321.

    Google Scholar 

  8. C.C. Bampton, A.K. Ghosh, and M.W. Mahoney: in Superplasticity in Aerospace—Aluminum, R. Pearce and L. Kelly, eds., Ashford Press, Hampshire, UK, 1985, p. 1.

    Google Scholar 

  9. C.C. Bampton and R. Raj: Acta Metall., 1982, vol. 30, p. 2043.

    Article  CAS  Google Scholar 

  10. C.C. Bampton, M.W. Mahoney, C.H. Hamilton, A.K. Ghosh, and R. Raj: Metall. Trans. A, 1983, vol. 14A, p. 1583.

    Google Scholar 

  11. D.W. Livesey and N. Ridley: Met. Sci., 1982, vol. 16, p. 563.

    Article  Google Scholar 

  12. C.H. Hamilton and E.D. Weisert: U.S. Patent No. 4,233,831, 1982.

  13. A.K. Ghosh: U.S. Patent No. 4,352, 280, 1988.

  14. A.K. Ghosh and D.H. Bae: Mater. Sci. Forum, Trans Tech Publications, Aedermannsdorf, Switzerland, 1997, vols. 243–245, p. 89.

    Google Scholar 

  15. K. Hiraga and K. Nakano: Mater. Sci. Forum, Trans Tech Publications, Aedermannsdorf, Switzerland, 1997, vols. 243–245, p. 387.

    Google Scholar 

  16. D.H. Bae and A.K. Ghosh: Acta Mater., 2002, vol. 50, p. 511.

    Article  CAS  Google Scholar 

  17. D. Hull and D.E. Rimmer: Phil. Mag., 1959, vol. 4, p. 673.

    CAS  Google Scholar 

  18. J.W. Hancock: Met. Sci., 1976, vol. 10, p. 319.

    Article  CAS  Google Scholar 

  19. A. Needleman and J.R. Rice: Acta Metall., 1980, vol. 28, p. 1315.

    Article  CAS  Google Scholar 

  20. D.A. Miller and T.G. Langdon: Metall. Trans. A, 1979, vol. 10A, p. 1869.

    CAS  Google Scholar 

  21. H. Watanabe, K. Ohori, and Y. Takeuchi: Trans. Iron Steel Inst. Jpn., 1987, vol. 27, p. 730.

    Google Scholar 

  22. P.A. Friedman and A.K. Ghosh: Metall. Mater. Trans., Mater., 1996, vol. 27A, pp. 3030

    CAS  Google Scholar 

  23. D.-G.C. Syu and A.K. Ghosh: Metall. Mater. Trans., 1994, vol. 25A, pp. 2049.

    CAS  Google Scholar 

  24. D.H. Bae and A.K. Ghosh: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2465–71.

    CAS  Google Scholar 

  25. Z. Marciniak and K. Kuczynski: Int. J. Mech. Sci., 1967, vol. 9, p. 609.

    Article  Google Scholar 

  26. E.E. Underwood: in Quantitative Microscopy, R.T. Dehoff and F.N. Rhines, eds., McGraw-Hill, New York, NY, 1968, 149.

    Google Scholar 

  27. D.H. Bae and A.K. Ghosh: Acta Mater., 2000, vol. 48, p. 1207.

    Article  CAS  Google Scholar 

  28. F. Li, D.H. Bae, and A.K. Ghosh: Acta Mater., 1997, vol. 45, p. 3887.

    Article  CAS  Google Scholar 

  29. D.H. Bae and A.K. Ghosh: Acta Mater., 2000, vol. 50, p. 993.

    Article  Google Scholar 

  30. A.K. Ghosh, D.H. Bae, and S.L. Semiatin: Material Science Forum, Trans Tech Publications, Aedermannsdorf, Switzerland, 1999, vols. 304–306, p. 609.

    Google Scholar 

  31. A.C.F. Cocks and M.F. Ashby: Met. Sci., 1980, vol. 14, p. 395.

    Article  Google Scholar 

  32. M.J. Stowell, D.W. Livesey, and N. Ridley: Acta Metall., 1984, vol. 32, p. 35.

    Article  Google Scholar 

  33. W. Beere: Met. Sci., 1976, vol. 10, p. 133.

    Article  CAS  Google Scholar 

  34. A. Needleman: J. Appl. Mech., 1987, vol. 54, p. 525.

    Article  Google Scholar 

  35. H.A. Kuhn: Metals Handbook, 9th ed., ASM INTERNATIONAL, Metals Park, OH, 1988, vol. 14, p. 388.

    Google Scholar 

  36. D.-G.C. Syu and A.K. Ghosh: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2027

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, D.H., Ghosh, A.K. & Bradley, J.R. Stress-state dependence of cavitation and flow behavior in superplastic aluminum alloys. Metall Mater Trans A 34, 2449–2463 (2003). https://doi.org/10.1007/s11661-003-0005-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0005-4

Keywords

Navigation