Skip to main content
Log in

β-Cristobalite stabilization in (Na2O+Al2O3)-added silica

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The metastable retention of β-cristobalite in sintered colloidal gel-derived silica powder with (Na2O + Al2O3) addition has been confirmed by both X-ray diffractometry (XRD) and transmission electron microscopy (TEM). Selected-area electron diffraction patterns (SADP) for the chemically stabilized β-cristobalite revealed diffuse electron scattering intensities (DSIs) along 〈111〉 β(-cristobalite), 〈110〉 β , and 〈100〉 β , respectively, representing a disordered structure probably of dynamic nature. However, only 〈011〉 α(-cristobalite) streaks are retained in α-cristobalite, which is characterized by the lamellar twins and formed after the β → α-cristobalite phase transformation. The mottled contrast in the crystalline and amorphous phase mixture of the sintered samples, as revealed by TEM, may be interpreted as the diagnostic feature for the existence of β-cristobalite. Microchemical analysis of the sintered samples, containing a mixture of α- and β-cristobalite in a glass matrix, suggests that the chemically stabilized β-cristobalite has a composition of Na2O:Al2O3:SiO2=7:16:77, which is higher in Al2O3-content than the starting powder. The stabilization mechanism of β-cristobalite in (Na2O + Al2O3)-added silica is discussed in view of possible defect reactions. It is proposed that the stabilization involves the substitutional defect of Al′si and the interstitial cations of Nai and Ali in the SiO4 network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Withers, J.G. Thompson, and T.R. Welberry: Phys. Chem. Minerals, 1989, vol. 16, pp. 517–23.

    Article  CAS  Google Scholar 

  2. P.J. Heaney: in Silica—Physical Behavior, Geochemistry and Material Applications, P.J. Heaney, C.T. Prewitt, and G.V. Gibbs, eds., Mineralological Society of America, Washington, DC, 1994, pp. 1–40.

    Google Scholar 

  3. P.L. Gai-Boyes, M.A. Saltzberg, and A. Vega: J. Solid State Chem., 1993, vol. 106, pp. 35–47.

    Article  CAS  Google Scholar 

  4. A.J. Leadbetter and A.F. Wright: Phil. Mag., 1976, vol. 33 (1), pp. 104–12.

    Google Scholar 

  5. K.D. Hammonds, M.T. Dove, A.P. Giddy, V. Heine, and B. Winkler: Am. Mineral., 1996, vol. 81, pp. 1057–79.

    CAS  Google Scholar 

  6. M.T. Dove, M. Bambhir, K.D. Hammonds, V. Heine, and A.K.A. Pryde: Phase Transition, 1996, vol. 58, pp. 121–43.

    CAS  Google Scholar 

  7. A.F. Wright and A.J. Leadbetter: Phil. Mag., 1975, vol. 31 (6), pp. 1391–40.

    CAS  Google Scholar 

  8. G.L. Hua, T.R. Welberry, R.L. Withers, and J.G. Thompson: J. Appl. Cryst., 1988, vol. 21 (5), pp. 458–65.

    Article  CAS  Google Scholar 

  9. F. Aumento: Am. Mineral, 1966, vol. 51, pp. 1167–76.

    CAS  Google Scholar 

  10. I.P. Swainson and M.T. Dove: J. Phys. Condens. Matter, 1995, vol. 7, pp. 1771–88.

    Article  CAS  Google Scholar 

  11. A.H. Heuer, R. Chaim, and V. Lanteri: in Science and Technology of Zirconia (II), A.H. Heuer, and M. Ruehle, eds., American Ceramic Society, Westerville, OH, 1988, pp. 3–20.

    Google Scholar 

  12. A.J. Perrotta, D.K. Grubbs, E.S. Martins, N.R. Dando, H.A. MacKinstry, and C.Y. Huang: J. Am. Ceram. Soc., 1989, vol. 72 (3), pp. 441–47.

    Article  CAS  Google Scholar 

  13. M.A. Saltzberg, S.L. Bors, H. Bergna, and S.C. Winchester: J. Am. Ceram. Soc., 1992, vol. 75 (1), pp. 89–95.

    Article  CAS  Google Scholar 

  14. E.S. Thomas, J.P. Thompson, R.L. Withers, M. Sterns, Y. Xiao, and R.J. Kirkpatrick: J. Am. Ceram. Soc., 1994, vol. 77 (1), pp. 49–56.

    Article  CAS  Google Scholar 

  15. J.B. Praise, A. Yeganeh-Haeri, D.J. Weidner, J.D. Jorgensen, and M.A. Saltzberg: J. Appl. Phys., 1994. 75 (3), pp. 1361–67.

    Article  Google Scholar 

  16. M.J. Buerger: Am. Mineral., 1954, vol. 39, p. 600.

    CAS  Google Scholar 

  17. J.F. MacDowell and G.H. Beall: J. Am. Ceram. Soc., 1969, vol. 52 (1), pp. 17–25.

    Article  CAS  Google Scholar 

  18. C.T. Li: U.S. Patent No. 4,050,946, 1977, Owens-Illinois, Inc., Toledo, OH.

    Google Scholar 

  19. R. Brueckner: J. Non-Cryst. Solids, 1970, vol. 5 (2), pp. 123–75.

    Article  CAS  Google Scholar 

  20. C.H. Chao and H.Y. Lu: Mater. Sci. Eng. A, 2002, vol. A328 (1–2), pp. 267–76.

    CAS  Google Scholar 

  21. B.D. Cullity: Introduction to X-Ray Diffraction, Addison-Wesley, New York, NY, 1978, pp. 407–17.

    Google Scholar 

  22. J.H. Jean and T.K. Gupta: J. Am. Ceram. Soc., 1993, vol. 76 (8), pp. 2010–16.

    Article  CAS  Google Scholar 

  23. G. Nord: in Reviews in Mineralology, J.M. Cowley, ed., American Mineral. Society of America, Washington, DC, 1992, vol. 27, pp. 455–508.

    Google Scholar 

  24. M.A. Carpenter and M. Wennemer: Am. Mineral., 1985, vol. 70, pp. 458–65.

    Google Scholar 

  25. C.H. Chao and H.Y. Lu: Mater. Sci. Eng., 2000, vol. A282 (1–2), pp. 123–30.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, CH., Lu, HY. β-Cristobalite stabilization in (Na2O+Al2O3)-added silica. Metall Mater Trans A 33, 2703–2711 (2002). https://doi.org/10.1007/s11661-002-0392-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0392-y

Keywords

Navigation