Skip to main content

Advertisement

Log in

Room-temperature mechanical properties of cold-rolled thin foils of binary, stoichiometric Ni3Al

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In our previous works, thin foils of boron-free stoichiometric Ni3Al, with thicknesses ranging from 57 to 315 µm, were fabricated by cold rolling of single-crystalline sheets which were sectioned from directionally solidified ingots. In this article, the room-temperature mechanical properties of the 83 and 95 pct cold-rolled foils were examined. Depending on the initial rolling direction, the foils exhibited two types of deformation microstructures: a banded structure with dual {110} textures and a band-free structure with a single {110} texture. The 83 pct cold-rolled foils showed very high Vickers hardness numbers: 649 and 604 for the banded and band-free structures, respectively. The foils possessed very high tensile fracture stress (1.7 to 2.0 GPa), with no appreciable plastic elongation along the rolling direction. The fracture stress of the 95 pct cold-rolled foils was slightly higher than that of the 83 pct cold-rolled foils. The banded-structure foils showed slightly higher fracture stress than the band-free-structure foils at the 83 pct reduction, but there was no difference between both the structures at the 95 pct reduction. Although there was no appreciable tensile elongation, slip traces were clearly observed on the surfaces of the foil specimens after the tensile test, indicating traces of some plastic deformation. The 95 pct cold-rolled foils possessed bending ductility, which was estimated as about 12 pct elongation on the tension-side surface of the bent specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.S. Stoloff: Int. Mater. Rev., 1989, vol. 34, pp. 153–83.

    CAS  Google Scholar 

  2. K. Aoki and O. Izumi: Trans. JIM, 1978, vol. 19, pp. 203–10.

    CAS  Google Scholar 

  3. K. Aoki and O. Izumi: Nihon Kinzoku Gakkai Shi, 1979, vol. 43, pp. 1190–96.

    CAS  Google Scholar 

  4. C.T. Liu, C.L. White, and J.A. Horton: Acta Metall., 1985, vol. 33, pp. 213–29.

    Article  CAS  Google Scholar 

  5. C.T. Liu and V.K. Sikka: J. Met., 1986, vol. 38, pp. 19–21.

    CAS  Google Scholar 

  6. T. Hirano: Acta Metall. Mater., 1990, vol. 38, pp. 2667–71.

    Article  CAS  Google Scholar 

  7. T. Hirano: Scripta Metall. Mater., 1991, vol. 25, pp. 1747–50.

    Article  CAS  Google Scholar 

  8. M. Demura, Y. Suga, O. Umezawa, K. Kishida, E.P. George, and T. Hirano: Intermetallics, 2001, vol. 9, pp. 157–67.

    Article  CAS  Google Scholar 

  9. M. Demura, K. Kishida, O. Umezawa, K. Kishida, E.P. George, and T. Hirano: Proc. Mechanical Properties of Structural Films, Orlando, FL, 2000, ASTM, West Conshohocken, PA, 2001, pp. 248–61.

    Google Scholar 

  10. T. Hirano, M. Demura, K. Kishida, H.U. Hong, and Y. Suga: Proc. ISSI, 2001, vol. 3, pp. 765–74.

    Google Scholar 

  11. K. Kishida, M. Demura, T. Hirano, and Y. Suga: Proc. EUROMAT 2001, Rimini, 2001.

  12. K. Kishida, M. Demura, T. Hirano, and Y. Suga: Proc. Fourth Pacific Rim Int. Conf. on Advanced Materials and Processing (PRICM 4), 2001, pp. 867–70.

  13. K. Kishida, M. Demura, and T. Hirano: National Institute for Materials Science, Tsukuba, Ibaraki, Japan, unpublished research, 2001.

  14. J.A. Wert, Q. Liu, and N. Hansen: Acta Mater., 1997, vol. 45, pp. 2565–76.

    Article  CAS  Google Scholar 

  15. T. Taoka, E. Furubayashi, and S. Takeuchi: Trans. ISIJ, 1966, vol. 6, pp. 290–316.

    Google Scholar 

  16. J. Ball and G. Gottstein: Intermetallics, 1993, vol. 1, pp. 171–85.

    Article  CAS  Google Scholar 

  17. T. Hirano and T. Kainuma: Iron Steel Inst. Jpn. Int., 1991, vol. 31, pp. 1134–38.

    CAS  Google Scholar 

  18. D. Golberg, M. Demura, and T. Hirano: Acta Mater., 1998, vol. 46, pp. 2695–2703.

    Article  Google Scholar 

  19. M. Demura and T. Hirano: Phil. Mag. Lett., 1997, vol. 75, pp. 143–48.

    Article  CAS  Google Scholar 

  20. P. Veyssiere and G. Saada: Dislocations in Solids, F.R.N. Nabarro and M.S. Duesbery, eds., Elsevier, Amsterdam, North-Holland, 1996, vol. 10, p. 263.

    Google Scholar 

  21. B.H. Kear and H.G.F. Wilsdorf: Trans. AIME, 1962, vol. 224, pp. 382–86.

    CAS  Google Scholar 

  22. S. Takeuchi and E. Kuramoto: Acta Metall., 1973, vol. 21, pp. 415–25.

    Article  CAS  Google Scholar 

  23. T. Mawari and T. Hirano: Intermetallics, 1995, vol. 3, pp. 23–33.

    Article  CAS  Google Scholar 

  24. T. Hirano, M. Demura, and D. Golberg: Acta Mater., 1999, vol. 47, pp. 3441–46.

    Article  CAS  Google Scholar 

  25. C.D. Beachem: Fracture an Advanced Treatise, H. Liebowitz, ed., Academic Press, New York, NY, 1968, vol. 1, p. 332.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demura, M., Kishida, K., Hirano, T. et al. Room-temperature mechanical properties of cold-rolled thin foils of binary, stoichiometric Ni3Al. Metall Mater Trans A 33, 2607–2613 (2002). https://doi.org/10.1007/s11661-002-0382-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0382-0

Keywords

Navigation