Skip to main content
Log in

Simulation of ferrite growth in continuously cooled low-carbon iron alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The growth of a planar ferrite (α): austenite (γ) boundary in low-carbon iron and Fe-Mn alloys continuously cooled from austenite through the (α+γ) two-phase field and the α single-phase field was simulated by incorporating carbon diffusion in austenite, intrinsic boundary mobility, and the drag of an alloying element. At a very high cooling rate (≥ 103 °C/s), the width of the carbon diffusion spike in austenite approaches the limit at which spikes are viable, so that the growth of ferrite in which carbon is not partitioned can occur even above the α solvus. In this context, the upper limiting temperature of partitionless growth of ferrite is the T 0 temperature. In the presence of drag of an alloying element, e.g., Mn, both carbon-partitioned and partitionless growth of ferrite begins to occur at finite undercoolings from the Ae 3, T 0, or α-solvus temperature, at which the driving force for transformation exceeds the drag force. The intrinsic mobility of the α:γ boundary may play a significant role at an extremely high cooling rate (≥105 °C/s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.D. Swanson and J.G. Parr: J. Iron Steel Inst., 1964, vol. 202, pp. 104–07.

    CAS  Google Scholar 

  2. F.W. Jones and W.I. Pumphrey: J. Iron Steel Inst., 1949, vol. 163, pp. 121–31.

    CAS  Google Scholar 

  3. T.B. Massalski, A.J. Perkins, and J. Jaklovsky: Metall. Trans., 1972, vol. 3, pp. 687–94.

    CAS  Google Scholar 

  4. T.B. Massalski, J.H. Perepezko, and J. Jaklovsky: Mater. Sci. Eng., 1975, vol. 18, pp. 193–98.

    Article  CAS  Google Scholar 

  5. E.S.K. Menon, M.R. Plichta, and H.I. Aaronson: Acta Metall., 1988, vol. 36, pp. 321–32.

    Article  CAS  Google Scholar 

  6. M. Hillert: Metall. Mater. Trans. A, 1984, vol. 15A, pp. 411–19.

    CAS  Google Scholar 

  7. E.A. Wilson: Iron Steel Inst. Jpn., 1994, vol. 34, pp. 615–30.

    CAS  Google Scholar 

  8. G.P. Krielaart, J. Sietsma, and S. van der Zwaag: Mater. Sci. Eng., 1998, vol. A238, pp. 104–16.

    Google Scholar 

  9. T.A. Kop, Y. van Leeuwen, J. Sietsma, and S. van der Zwaag: Iron Steel Inst. Jpn. Int., 2000, vol. 40, pp. 713–18.

    CAS  Google Scholar 

  10. M. Suehiro, Z.-K. Liu, and J. Ågren: Acta Mater., 1996, vol. 44, pp. 4241–51.

    Article  CAS  Google Scholar 

  11. M. Enomoto: Acta Mater., 1999, vol. 47, pp. 3533–40.

    Article  CAS  Google Scholar 

  12. G.R. Purdy, W.T. Reynolds, Jr., and H.I. Aaronson: Proc. Int. Conf. on Solid → Solid Phase Transformations (PTM ’99), M. Koiwa, K. Ohtsuka, and T. Miyazaki, eds., Japan Institute of Metals, Kyoto, 1999, pp. 1461–64.

    Google Scholar 

  13. M. Hillert: Acta Mater., 1999, vol. 47, pp. 4481–505.

    Article  CAS  Google Scholar 

  14. M. Hillert and M. Schalin: Acta Mater., 2000, vol. 48, pp. 461–68.

    Article  CAS  Google Scholar 

  15. K. Oi, C. Lux, and G.R. Purdy: Acta Mater., 2000, vol. 48 pp. 2147–55.

    Article  CAS  Google Scholar 

  16. E.S.K. Menon, M.R. Plichta, and H.I. Aaronson: Scripta Metall., 1983, vol. 17, pp. 1455–57.

    Article  Google Scholar 

  17. M. Enomoto and N. Nojiri: Scripta Mater., 1997, vol. 36, pp. 625–32.

    Article  CAS  Google Scholar 

  18. I.I. Kolodner: Comm. Pure Appl. Math., 1956, vol. 6, pp. 1–31.

    Article  Google Scholar 

  19. M. Enomoto and C. Atkinson: Acta Metall. Mater., 1993, vol. 41, pp. 3237–44.

    Article  CAS  Google Scholar 

  20. M. Hillert: Metall. Trans. A, 1975, vol. 6A, pp. 5–19.

    Google Scholar 

  21. M. Enomoto, T. Sonoyama, and H. Yada: Mater. Trans., JIM, 1998, vol. 39, pp. 189–95.

    CAS  Google Scholar 

  22. M. Enomoto, M. Kagayama, N. Maruyama, and T. Tarui: Proc. Int. Conf. on Solid → Solid Phase Transformations (PTM ’99), Kyoto, 1999, M. Koiwa, K. Ohtsuka, and T. Miyazaki eds., Japan Institute of Metals, Kyoto, 1989, pp. 1453–60.

    Google Scholar 

  23. J.W. Cahn: Acta Metall., 1962, vol. 10, pp. 789–98.

    Article  CAS  Google Scholar 

  24. M. Hillert, J. Odqvist, and J. Ågren: Scripta Mater., 2001, vol. 45, pp. 221–27.

    Article  CAS  Google Scholar 

  25. L. Kaufman, S.V. Radcliffe, and M. Cohen: in Decomposition of Austenite by Diffusional Processes, V.F. Zackay and H.I. Aaronson, eds., Interscience Publishers, New York, NY, 1962, pp. 313–52.

    Google Scholar 

  26. M. Enomoto and H.I. Aaronson: CALPHAD, 1985, vol. 9, pp. 43–58.

    Article  CAS  Google Scholar 

  27. B. Uhrenius: in Hardenability Concepts with Applications to Steel, D.V. Doane and J.S. Kirkaldy, eds., TMS-AIME, Warrendale, PA, 1978, pp. 28–81.

    Google Scholar 

  28. G.P. Krielaart, J. Sietsma, and S. van der Zwaag: Mater. Sci. Eng., 1997, vol. A237, pp. 216–23.

    CAS  Google Scholar 

  29. A. Borgenstam and M. Hillert: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1499–510.

    Google Scholar 

  30. J. Friedberg, L.-E. Torndahl, and M. Hillert: Jernkont. Ann., 1969, vol. 153, pp. 263–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made at the symposium entitled “The Mechanisms of the Massive Transformation,” a part of the Fall 2000 TMS Meeting held October 16–19, 2000, in St. Louis, Missouri, under the auspices of the ASM Phase Transformations Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enomoto, M. Simulation of ferrite growth in continuously cooled low-carbon iron alloys. Metall Mater Trans A 33, 2309–2316 (2002). https://doi.org/10.1007/s11661-002-0354-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0354-4

Keywords

Navigation