Skip to main content
Log in

Solidification paths and reinforcement morphologies in melt-processed (TiB + TiC)/Ti In Situ Composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A novel in situ process was developed to produce titanium matrix composites reinforced with TiB and TiC of different mole ratios in which traditional ingot metallurgy plus self-propagation hightemperature synthesis (SHS) reactions between Ti and B4C, graphite powder were used. Microstructures of (TiB+TiC)/Ti in situ composites were comprehensively characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). Solidification paths were investigated using a differential scanning calorimeter (DSC). Results show that there is an apparent difference in morphologies of reinforcements. The reinforcements nucleate and grow from the melt in a way of dissolution precipitation. The different morphologies are related to their solidification paths and the particular crystal structure of the reinforcement. TiB grows along the [010] direction and forms short-fiber shape due to its B27 structure, whereas TiC with NaCl type structure grows in a dendritic, equiaxed, or near-equiaxed shape. The DSC results and analysis of the phase diagram yield three stages for the solidification paths of in situ synthesized titanium matrix composites: (1) primary phase, (2) monovariant binary eutectic, and (3) invariant ternary eutectic. The addition of graphite adjusts the solidification paths and forms more dendritic primary TiC. The addition of aluminum does not change the solidification paths. However, the reinforcements grow finer and lead to equiaxed or near-equiaxed TiC morphologies. The following consistent crystallographic relationships between TiB and titanium were observed by HRTEM, i.e., [010]TiB//[\(01\bar 10\)]Ti, (100)TiB//(\(\bar 2110\))Ti, (001)TiB//(0002)Ti, (\(10\bar 1\))TiB//(\(4\overline {22} 1\))Ti and [001]TiB//[\(01\bar 10\)]Ti, (\(0\bar 10\))TiB//(\(\bar 2110\))Ti, (200)TiB//(0002)Ti. The formation of the preceding crystallographic relationships is related to the growth mechanism of TiB. It also helps to minimize the lattice strain at the interfaces between TiB and the titanium matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Wanjara, S. Yue, R.A.L. Drew, J. Root, and R. Donaberger: Key Eng. Mater., 1997, vols. 127–131, pp. 415–22.

    Google Scholar 

  2. Stanley Abkowitz and Susan M. Abkowitz: Industrial Heating, 1993, vol. 60 (9), pp. 32–37.

    Google Scholar 

  3. Y. Lin, R.H. Zee, and A. Chin: Metall. Trans. A, 1991, vol. 22A, pp. 859–65.

    CAS  Google Scholar 

  4. R. Zee, Chi Yang, Yi Xing Lin, and B. Chin: J. Mater. Sci., 1991, vol. 26, pp. 3853–61.

    Article  CAS  Google Scholar 

  5. H.T. Tsang, C.G. Chao, and C.Y. Ma: Scripta Mater., 1997, vol. 37, pp. 1359–65.

    Article  CAS  Google Scholar 

  6. S. Rangnath, M. Vijayakumar, and J. Subrahmanyam: Mater. Sci. Eng. A, 1992, vol. 149, pp. 253–57.

    Article  Google Scholar 

  7. S. Dubey, R.J. Lederich, and W.O. Soboyejo: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2037–47.

    Article  CAS  Google Scholar 

  8. S. Rangarajan, P.B. Aswath, and W.O. Soboyejo: Scripta Mater., 1997, vol. 35, pp. 239–45.

    Google Scholar 

  9. S. Rangarajan, P.B. Aswath, and W.O. Soboyejo: J. Mater. Res., 1997, vol. 12, pp. 1102–11.

    CAS  Google Scholar 

  10. B.G. Velasco and P.B. Aswath: J. Mater. Sci., 1998, vol. 33, pp. 2203–14.

    Article  CAS  Google Scholar 

  11. M.L. Vanmeter, S.L. Kampe, and L. Christodoulou: Scripta Mater., 1996, vol. 34, pp. 1251–56.

    Article  CAS  Google Scholar 

  12. S.L. Kampe, P. Sadler, L. Christodoulou, and D.E. Larsen: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2181–97.

    CAS  Google Scholar 

  13. J.Q. Jiang, T.S. Lim, Y.J. Kim, B.K. Kim, and H.S. Chung: Mater. Sci. Technol., 1996, vol. 12, pp. 362–65.

    CAS  Google Scholar 

  14. Z. Fan, H.J. Niu, A.P. Miodownik, T. Saito, and B. Cantor: Key Eng. Mater., 1997, vols. 127–131, pp. 423–30.

    Article  Google Scholar 

  15. T. Saito, H. Takamiya, and T. Furuta: Mater. Sci. Eng. A, 1998, vol. 243A, pp. 273–78.

    Google Scholar 

  16. M. Kobayashi, K. Funami, S. Suzuki, and C. Ouchi: Mater. Sci. Eng. A, 1998, vol. 243A, pp. 279–84.

    Google Scholar 

  17. Teruo Takahashi: J. Jpn. Inst. Met., 1995, vol. 59, pp. 244–50 (in Japanese).

    CAS  Google Scholar 

  18. M.E. Hyman, C. Mccullough, J.J. Valencia, C.G. Levi, and R. Mehrabian: Metall. Trans. A, 1989, vol. 20A, pp. 1847–59.

    CAS  Google Scholar 

  19. M.E. Hyman, C. Mccullough, C.G. Levi, and R. Mehrabian: Metall. Trans. A, 1991, vol. 22A, pp. 1647–62.

    CAS  Google Scholar 

  20. X.N. Zhang, W.J. Lu, D. Zhang, R.J. Wu, Y.J. Bian, and P.W. Fang: Scripta Metall., 1999, vol. 41, pp. 39–46.

    Article  CAS  Google Scholar 

  21. H. Duschanek, P. Rogal, and H.L. Lukas: J. Phase Equilibria, 1995, vol. 16, pp. 46–60.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, W.J., Zhang, D., Wu, R.J. et al. Solidification paths and reinforcement morphologies in melt-processed (TiB + TiC)/Ti In Situ Composites. Metall Mater Trans A 33, 3055–3063 (2002). https://doi.org/10.1007/s11661-002-0290-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0290-3

Keywords

Navigation