Skip to main content
Log in

Understanding creep—a review

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A simple model based on the Orowan equation and the dynamic evolution of the dislocation structure by generation and merging of slipped areas is used to see which experimental results on creep of pure and solute-hardened crystalline materials can or cannot be explained with regard to creep with refinement or coarsening of the dislocation structure and steady-state creep. Quantitative deficiencies of the model for pure materials are discussed; most of them are related to neglection of subgrain formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Alexander and P. Haasen: Solid State Phys., 1968, vol. 22, p. 27.

    Article  CAS  Google Scholar 

  2. W. Blum: in Plastic Deformation and Fracture of Materials, H. Mughrabi, ed., vol. 6 Materials Science and Technology, R.W. Cahn, P. Haasen, and E.J. Kramer, eds., VCH Verlagsgesellschaft, Weinheim, 1993, pp. 359–405.

    Google Scholar 

  3. J. Weertman: Trans. AIME, 1960, vol. 218, pp. 207–18.

    CAS  Google Scholar 

  4. J. Weertman: Trans. ASM, 1968, vol. 61, pp. 681–94.

    CAS  Google Scholar 

  5. W. Blum: Mater. Sci. Eng. A, in press.

  6. E. Nes: Progr. Mater. Sci., 1998, vol. 41, pp. 129–93.

    Article  Google Scholar 

  7. F. Roters: Berichte aus der Werkstofftechnik, D 82 (Diss. RWTH Aachen), Shaker Verlag, Aachen, 1999.

    Google Scholar 

  8. F. Roters, D. Raabe, and G. Gottstein: Acta Mater., 2000, vol. 48, pp. 4181–89.

    Article  CAS  Google Scholar 

  9. U. Essmann and H. Mughrabi: Phil. Mag., 1979, vol. 40, pp. 731–56.

    CAS  Google Scholar 

  10. Peter Haasen: Physikalische Metallkunde. Springer-Verlag, Berlin, 1974.

    Google Scholar 

  11. H. Kronmüller: Moderne Probleme der Metallphysik, Springer, Berlin, 1965, vol. 1, pp. 126–91.

    Google Scholar 

  12. U.F. Kocks: J. Eng. Mater. Technol. (ASME-H), 1976, vol. 98, pp. 76–85.

    CAS  Google Scholar 

  13. A.H. Cottrell and M.A. Jaswon: Proc. R. Soc., 1949, vol. A199, p. 104.

    CAS  Google Scholar 

  14. S. Takeuchi and A.S. Argon: Acta Metall., 1976, vol. 24, pp. 883–89.

    Article  CAS  Google Scholar 

  15. Q. Zhu and W. Blum: Proc. 7th JIM Int. Symp. on Aspects of High Temperature Deformation and Fracture in Crystalline Materials, Y. Hosoi, H. Yoshinaga, H. Oikawa, and K. Maruyama, eds., The Japan Institute of Metals, Sendai, 1993, pp. 649–56.

    Google Scholar 

  16. W. Blum and A. Finkel: Acta Metall., 1982, vol. 30, pp. 1705–15.

    Article  Google Scholar 

  17. W. Blum and E. Weckert: Mater. Sci. Eng., 1987, vol. 23, pp. 145–58.

    Google Scholar 

  18. S.U. An, H. Wolf, S. Vogler, and W. Blum: in Creep and Fracture of Engineering Materials and Structures, B. Wilshire and R.W. Evans, eds., The Institute of Metals, London, 1990, pp. 81–95.

    Google Scholar 

  19. F. Breutinger and W. Blum: Proc. 9th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, J.D. Parker, ed., The Institute of Metals, London, 2001, pp. 39–48.

    Google Scholar 

  20. C.R. Barrett and O.D. Sherby: Trans. AIME, 1965, vol. 233, p. 1116.

    CAS  Google Scholar 

  21. H. Mecking, B. Nicklas, B. Zarubova, and U.F. Kocks: Acta Metall., 1986, vol. 34, pp. 527–35.

    Article  Google Scholar 

  22. J. Čadek: Creep in Metallic Materials, Elsevier, Amsterdam, 1988.

    Google Scholar 

  23. A.S. Argon and W.C. Moffatt: Acta Metall., 1981, vol. 29, pp. 293–99.

    Article  Google Scholar 

  24. B. Geibel: Ph.D. thesis, University of Erlangen-Nürnberg, Erlangen, 1996.

    Google Scholar 

  25. W. Blum: The Johannes Weertman Symp., R.W. Arsenault, D. Cole, T. Gross, G. Kostorz, P. Liaw, S. Parameswaran, and H. Sizek, eds., TMS, Warrendale, PA, 1996, pp. 103–17.

    Google Scholar 

  26. H. McQueen: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 345–62.

    CAS  Google Scholar 

  27. W. Blum: Hot Deformation of Aluminum Alloys, T.G. Langdon, H.D. Merchant, J.G. Morris, and M.A. Zaidi, eds., TMS, Warrendale, PA, 1991, pp. 181–209.

    Google Scholar 

  28. J. Harper and J.E. Dorn: Acta Metall., 1957, vol. 5, p. 654.

    Article  CAS  Google Scholar 

  29. W. Blum and W. Maier: Phys. Status Solidi (a), 1999, vol. 171, pp. 467–74.

    Article  CAS  Google Scholar 

  30. F.R.N. Nabarro: Phys. Status Solidi (a), 2000, vol. 182, pp. 627–29.

    Article  CAS  Google Scholar 

  31. K.R. McKnee, H.K.R. Jones, and G.W. Greenwood: Proc. 9th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, J.D. Parker, ed., The Institute of Metals, London, 2001, pp. 185–95.

    Google Scholar 

  32. S.V. Raj and G. Pharr: Mater. Sci. Eng., 1986, vol. 81, pp. 217–37.

    Article  CAS  Google Scholar 

  33. C.R. Barrett, E.C. Muehleisen, and W.D. Nix: Mater. Sci. Eng., 1972, vol. 10, pp. 33–42.

    Article  CAS  Google Scholar 

  34. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps, Pergamon Press, Oxford, United Kingdom, 1982.

    Google Scholar 

  35. E. Nes, W. Blum, and P. Eisenlohr: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 305–10.

    CAS  Google Scholar 

  36. P.A. Thorsen and J. Bilde-Sørensen: Mater. Sci. Eng. A, 1999, vol. 265, pp. 140–45.

    Article  Google Scholar 

  37. K.R. McKnee, H.K.R. Jones, and G.W. Greenwood: Proc. 9th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, J.D. Parker, ed., The Institute of Metals, London, 2001, pp. 3–13.

    Google Scholar 

  38. A. Rendtel, H. Hübner, M. Herrmann, and C. Schubert: J. Am. Ceram. Soc., 1998, vol. 81(5): pp. 1109–20.

    Article  CAS  Google Scholar 

  39. F. Hebner: Master’s Thesis, Universität Erlangen-Nümberg, Erlangen, 2000.

    Google Scholar 

  40. H. Oikawa, K. Sugawara, and S. Karashima: Scripta Metall., 1976, p. 885.

  41. H. Oikawa and T.G. Langdon: in Creep Behaviour of Crystalline Solids, B. Wilshire and R.W. Evans, eds., Pineridge Press, Swansea, 1985, pp. 33–82.

    Google Scholar 

  42. W. Blum and F. Roters: Phys. Status Solidi (a), 2001, vol. 184, pp. 257–61.

    Article  CAS  Google Scholar 

  43. M.E. Kassner and M.-T. Pérez-Prado: Progr. Mater. Sci., 2000, vol. 45(1), pp. 1–102.

    Article  CAS  Google Scholar 

  44. M. Biberger and W. Blum: Scripta Metall., 1989, vol. 23, pp. 1419–24.

    Article  CAS  Google Scholar 

  45. S. Straub and W. Blum: Scripta Metall. Mater., 1990, vol. 24, pp. 1837–42.

    Article  CAS  Google Scholar 

  46. E. Nes, T. Pettersen, and K. Marthinsen: Scripta Mater., 2000, vol. 43, pp. 55–62.

    Article  CAS  Google Scholar 

  47. W. Blum: in Light Metals 99, M. Bouchard and A. Faucher, eds., Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, 1999, pp. 521–36.

    Google Scholar 

  48. R. Sedláček, J. Kratochvíl, and W. Blum: Phys. Status Solidi (a), 2001, vol. 186, pp. 1–16.

    Article  Google Scholar 

  49. R. Sedláček, W. Blum, J. Kratochvíl, and S. Forest: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 319–27.

    Google Scholar 

  50. S. Vogler and W. Blum: Creep and Fracture of Engineering Materials and Structures, B. Wilshire and R.W. Evans, eds., The Institute of Metals, London, 1990, pp. 65–70.

    Google Scholar 

  51. R. Sedláček, S. Straub, A. Borbély, T. Ungár, and W. Blum: Plasticity of Metals and Alloys (ISPMA 6), P. Lukáč, ed., vols 97–98, Key Engineering Materials, E. Armanios, Y.-W. Mai, and F.H. Wöhlbier, eds., Trans Tech Publications, Aedermannsdorf, Switzerland, 1994, pp. 461–66.

    Google Scholar 

  52. W. Müller, M. Biberger, and W. Blum: Phil. Mag. A, 1992, vol. 66, pp. 717–28.

    Google Scholar 

  53. P. Yavari, F.A. Mohamed, and T.G. Langdon: Acta Metall., 1981, vol. 29, pp. 1495–1507.

    Article  CAS  Google Scholar 

  54. Smithells Metals Reference Book, 7th ed., E.A. Brandes and G.B. Brook, eds., Hartnolk Ltd., Bodmin, Cornwall, 1992.

    Google Scholar 

  55. T. Pöllmann: Ph.D. Thesis, Universität Erlangen-Nürnberg, Erlangen, 1994.

    Google Scholar 

  56. K. Linga Murty, F.A. Mohamed, and J.E. Dorn: Acta Metall., 1972, vol. 20, pp. 1009–18.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the workshop entitled “Mechanisms of Elevated Temperature Plasticity and Fracture,” which was held June 27–29, 2001, in San Diego, CA, concurrent with the 2001 Joint Applied Mechanics and Materials Summer Conference. The workshop was sponsored by Basic Energy Sciences of the United States Department of Energy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blum, W., Eisenlohr, P. & Breutinger, F. Understanding creep—a review. Metall Mater Trans A 33, 291–303 (2002). https://doi.org/10.1007/s11661-002-0090-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0090-9

Keywords

Navigation