Skip to main content

Advertisement

Log in

Stress and temperature dependence of creep in Alloy 600 in primary water

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The stress and temperature dependence of creep of commercial nickel-base Alloy 600 was investigated through constant load, step-load, and step-temperature creep tests in deaerated primary water containing 40 to 60 cc/kg hydrogen. To analyze creep rates for Alloy 600 in the mill-annealed (MA) condition, effective stresses were estimated using applied stresses and instantaneous strains. The apparent activation area was determined to be 7b 2 by the multiple regression analysis of creep rates. The apparent activation energy for creep has a weak stress dependence and was determined to lie between 188 and 281 kJ/mole for the effective stress range of 117 to 232 MPa. Creep rates were better correlated with effective stress than applied stress and the stress exponent of Alloy 600 MA was determined to be 2.2 at 337 °C and 5.1 at 360 °C. The magnitudes of the stress exponent, activation energy, and activation area can be interpreted to support a creep mechanism controlled by dislocation-climb and nonconservative motion of jogs in commercial Alloy 600 MA. The activation area agreed with that determined from carbon in solution, implying thermally activated dislocation glide as another possible creep mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Van Rooyen: Corrosion, 1975, vol. 31 (9), pp. 327–37.

    Google Scholar 

  2. R.B. Rebak and Z. Szklarska-Smialowska: Corr. Sci., 1996, vol. 38 (6), pp. 971–88.

    Article  CAS  Google Scholar 

  3. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps, 1st ed., Pergamon Press, New York, NY, 1982.

    Google Scholar 

  4. Jin K. Sung, J. Wayne Jones, and G.S. Was: Metall. Trans. A, 1992, vol. 23A, pp. 1033–37.

    CAS  Google Scholar 

  5. T.M. Angeliu and G.S. Was: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1169–83.

    CAS  Google Scholar 

  6. J.R. Donati, M. Guttmann, Y. Rouillon, P. Saint-Paul, and J.C. Van Duysen: 3rd Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, TMS, Warrendale, PA, 1988, pp. 697–700.

    Google Scholar 

  7. G.S. Was: Parkins Symp. on Fundamental Aspects of Stress Corrosion Cracking, TMS, Warrendale, PA, 1992, pp. 371–87.

    Google Scholar 

  8. D. Paraventi and G.S. Was: 8th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, TMS, Warrendale, PA, 1997, pp. 299–306.

    Google Scholar 

  9. J.M. Boursier, O. de Bouvier, J.M. Gras, D. Noel, R. Rios, and F. Vaillant: Proc. Corrosion-Deformation Interactions, CDI ’92, Fontainebleau, France, 1992.

  10. J. Crum: Special Metals Corporation, Huntington, WV, unpublished research, 2000.

  11. P.W. Davies, G. Nelmes, K.R. Williams, and B. Wilshire: Met. Sci. J., 1973, vol. 7, pp. 87–92.

    CAS  Google Scholar 

  12. K.R. Williams and B. Wilshire: Met. Sci. J., 1973, vol. 7, pp. 176–79.

    CAS  Google Scholar 

  13. F.R.N. Nabarro and H.L. de Villiers: The Physics of Creep, Taylor and Francis Ltd., Bristol, PA, 1995, pp. 25–32.

    Google Scholar 

  14. H. Conrad: JOM, 1964, July, pp. 582–88.

  15. K. Milicka: Acta Metall., 1993, vol. 41, pp. 1163–72.

    Article  CAS  Google Scholar 

  16. L.J. Cuddy and J.C. Raley: Acta Metall., 1973, vol. 21, pp. 427–33.

    Article  CAS  Google Scholar 

  17. G. Konig and W. Blum: Acta Metall., 1977, vol. 25, pp. 1531–38.

    Article  Google Scholar 

  18. G. Schoeck: Mechanical Behavior of Materials at Elevated Temperatures, J.E. Dorn, ed., McGraw-Hill Book Company, Inc., New York, NY, 1961, p. 79.

    Google Scholar 

  19. J.M. Bousier, D. Desjardins, and F. Vaillant: Corr. Sci., 1995, vol. 37, pp. 493–508.

    Article  Google Scholar 

  20. G.S. Was and K. Lian: Corrosion, 1998, vol. 54 (9), pp. 675–88.

    Article  CAS  Google Scholar 

  21. S. Straub, W. Blum, H.J. Maier, T. Ungar, A. Borbely, and H. Renner: Acta Metall., 1996, vol. 44, pp. 4337–50.

    CAS  Google Scholar 

  22. D. Paraventi and G.S. Was: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2083–88.

    Google Scholar 

  23. H. Oiwakawa and S. Karashima: Metall. Trans., 1974, vol. 5, pp. 1179–82.

    Google Scholar 

  24. C.N. Ahlquist and W.D. Nix: Acta Metall., 1971, vol. 19, pp. 373–85.

    Article  Google Scholar 

  25. J.J. Jonas: Acta Metall., 1969, vol. 17, pp. 397–405.

    Article  CAS  Google Scholar 

  26. A.A. Solomom and W.D. Nix: Acta Metall., 1970, vol. 18, pp. 863–76.

    Article  Google Scholar 

  27. U.F. Kocks, A.S. Argon, and M.F. Ashby: Progr. Mater. Sci., 1975, vol. 19.

  28. N. Balasubramanian and J.C.M. Li: J. Mater. Sci., 1970, vol. 5, pp. 434–44.

    Article  CAS  Google Scholar 

  29. F.A. Nichols: Mater. Sci. Eng., 1971, vol. 8, pp. 108–20.

    Article  CAS  Google Scholar 

  30. G.W. Snedecor and W.G. Cochran: Statistical Methods, Iowa State University Press, Ames, IA, 1967, pp. 381–418.

    Google Scholar 

  31. J.C. Gibeling and W.D. Nix: Met. Sci., 1977, pp. 453–57.

  32. O.D. Sherby and P.M. Burke: Progr. Mater. Sci., 1968, vol. 13, p. 325.

    Article  Google Scholar 

  33. A.M. Cuitino: Acta Metall., 1997, vol. 45, pp. 2509–22.

    CAS  Google Scholar 

  34. J. Weertman: J. Appl. Phys., 1955, vol. 26 (10), pp. 1213–17.

    Article  CAS  Google Scholar 

  35. J. Weertman: J. Appl. Phys., 1957, vol. 28 (3), pp. 362–64.

    Article  CAS  Google Scholar 

  36. R. Lagneborg: in Creep of Engineering Materials and Structures, G. Bernasconi and G. Piatti, eds., Applied Science Publishers Ltd., London, 1978, p. 7.

    Google Scholar 

  37. J. Weertman: Trans. ASM, 1968, vol. 61, pp. 681–94.

    CAS  Google Scholar 

  38. M.A. Meyers and K.K. Chawla: Mechanical Metallurgy, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1984, pp. 667–78.

    Google Scholar 

  39. M.S. Soliman and F.A. Mohamed: Metall. Trans. A, 1984, vol. 15A, pp. 1893–1904.

    CAS  Google Scholar 

  40. M.S. Soliman: J. Mater. Sci., 1987, vol. 22, pp. 3529–32.

    Article  CAS  Google Scholar 

  41. G.S. Was and K. Lian: “The Role of Time-Dependent Deformation in Intergranular Crack Initiation of Alloy 600 Steam Generator Tubing Material,” NUREG/GR-0016, NRC, Washington, DC, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, Y., Was, G.S. Stress and temperature dependence of creep in Alloy 600 in primary water. Metall Mater Trans A 32, 2553–2560 (2001). https://doi.org/10.1007/s11661-001-0045-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0045-6

Keywords

Navigation