Skip to main content
Log in

Stress-strain hysteresis and damping in MnCu and NiTi alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Uniaxial stress-strain hysteresis loops for high damping manganese-copper (MnCu) and nickel-titanium (NiTi) shape memory alloys are experimentally determined. The characterization concerns two MnCu samples, one containing 60 pct Mn, the other 40 pct Mn, and two NiTi samples, one in the martensitic phase and the other in the austenitic phase at room temperature. In the 225 to 360 Hz frequency range, tests are conducted using a vibration exciter; for lower frequencies (2Hz), we use a Material Test System (MTS) servohydraulic apparatus. The ensuing characterization allows us to compute the energy dissipated per unit volume per cycle, the dynamic modulus, and the loss factor as a function of frequency and strain amplitude. The sensitivity of these results to such factors as frequency, temperature increments during the tests, and vibration duration are discussed. The experimental stress-strain characterization is also used to express the tangent stiffness along the stress-strain path as an analytical function of strain (within the vibration cycle) and strain amplitude using kriging interpolation. Behavioral differences both between the alloys and also from equivalent linear viscous models are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Lyon and A.F. Spillane: “The Development of ZA-27 Engine Mountings by Austin Rover,” Report No. 880290, Society of Automotive Engineers, Warrendale, PA, 1988.

    Google Scholar 

  2. B.J. Lazan: Damping of Materials and Members in Structural Mechanics, Pergamon Press, Oxford, United Kingdom, 1968.

    Google Scholar 

  3. I.G. Ritchie and Z.-L. Pan: Metall. Trans. A, 1991, vol. 22A, pp. 607–16.

    CAS  Google Scholar 

  4. E.J. Graesser and F.A. Cozzarelli: J. Eng. Mech., 1991, vol. 114 (11), pp. 2590–2608.

    Google Scholar 

  5. A.V. Srinivasan, D.G. Cutts, and L.M. Schetky: Metall. Trans. A, 1991, vol. 22A, pp. 623–27.

    Google Scholar 

  6. J. Zhang, R.J. Perez, and R.L. Lavernia: J. Mater. Sci., 1993, pp. 28:2395–28:2404.

  7. J. Van Humbeeck, J. Stoiber, L. Delaey, and R. Gotthardt: Z. Metallkd., 1995, vol. 86, pp. 176–83.

    Google Scholar 

  8. J.W. Jensen, A.E. Schaneke, and D.F. Walsh: U.S. Bureau of Mines Report of Investigation 5853, U.S. Government Printing Office, Washington, DC, 1961, pp. 1–14.

    Google Scholar 

  9. Y.S. Shin, K.S. Kim, and D.D. Dew: The Role of Damping in Vibration and Noise Control, ASME, New York, NY, 1987, pp. 229–37.

    Google Scholar 

  10. V.A. Udovenko: Nuleonika, 1994, vol. 39 (3), pp. 149–54.

    CAS  Google Scholar 

  11. A.P. Bovsunovsky: Exp. Mech., 1996, vol. 36, pp. 243–50.

    Article  CAS  Google Scholar 

  12. I.G. Ritchie and Z.-L. Pan: M3D: Mechanics and Mechanisms of Material Damping, ASTM STP 1169, V.K. Kinra and A. Wolfenden, eds., ASTM, Philadelphia, PA, 1992, pp. 142–57.

    Google Scholar 

  13. K. Ito, T. Moroyana, and I. Fukumoto: J. Phys., 1985, Coll. C10, Suppl. 12, Tome 46, pp. C10-645–C10-648.

    Google Scholar 

  14. V.I. Kolomytsev, V.A. Likhatchev, V.A. Lobodyuk, and S.R. Shimanskiy: Fis Met. Metall., 1988, vol. 65 (1), pp. 129–35.

    Google Scholar 

  15. E.J. Graesser and F.A. Cozzarelli: Proc. Damping ’93, 1993, CSA Engineering Incorporated, Palo Alto, CA, pp. ECB-1–ECB-20.

    Google Scholar 

  16. H.C. Lin, S.K. Wu, and M.T. Yeh: Metall. Trans. A, 1993, vol. 24A, pp. 2189–94.

    CAS  Google Scholar 

  17. M.C. Piedboeuf: Ph.D. Thesis, Ecole Polytechnique de Montreal, Montreal, 1997.

    Google Scholar 

  18. R. De Batist: Mechanics and Mechanisms of Material Damping, ASTM STP 1169, V.K. Kinra and A. Wolfenden, eds., ASTM, Philadephia, PA, 1992, pp. 45–49.

    Google Scholar 

  19. S. De Santis: Ph.D. Thesis, Ecole Polytechnique de Montreal, Montreal, 1999.

    Google Scholar 

  20. G. Matheron: Adv. Appl. Prob., 1973, vol. 5, pp. 439–68.

    Article  Google Scholar 

  21. F. Trochu: Eng. Comput., 1993, vol. 9, pp. 160–77.

    Article  Google Scholar 

  22. P. Terriault, M.-A. Meunier, and F. Trochu: J. Intell. Mater. Systems Struct., 1997, vol. 8, pp. 606–18.

    Google Scholar 

  23. F. Trochu and P. Terriault: Computer Methods Appl. Mech. Eng., 1998, vol. 151, pp. 545–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Santis, S., Trochu, F. & Ostiguy, G. Stress-strain hysteresis and damping in MnCu and NiTi alloys. Metall Mater Trans A 32, 2489–2498 (2001). https://doi.org/10.1007/s11661-001-0038-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0038-5

Keywords

Navigation