Skip to main content
Log in

Liquidus temperature determination in multicomponent alloys by thermal analysis

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thermal analysis is often used to determine equilibrium phase boundary temperatures such as the liquids. Accurate measurements require proper calibration procedures, which are standard for given instruments. In multicomponent alloys such as RENE N5 and PWA 1484 superalloys, a complex melting behavior associated with the solidification structure was exposed by examining the melting response at different heating rates. The observed variability in the melting signal is related to the sample processing history and is not addressed by the various standard calibration methods or supplemental procedures for different heating rates. The liquidus temperature can be determined under conditions approaching full compositional equilibrium by the application of an interrupted-heating thermal analysis protocol. The approach provides a new strategy for the reliable determination of phase boundary temperatures by thermal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Baker: ASM Handbook: Alloy Phase Diagrams, 10th ed., ASM, Metals Park, OH, 1992, vol. 3, pp. 1.16–1.17

    Google Scholar 

  2. B. Wunderlich: Thermal Analysis, Academic Press, Inc., San Diego, CA, 1990, pp. 171–80.

    Google Scholar 

  3. M.I. Pope, and M.D. Judd: Differential Thermal Analysis, Heyden, London, 1977, pp. 53–59.

    Google Scholar 

  4. J.K. Kivilahti and O.B. Tarasova: Metall. Trans. A, 1987, vol. 18A, pp. 1679–81.

    CAS  Google Scholar 

  5. Y. Aoki, S. Hayashi, and H. Komatsu: J. Cryst. Growth, 1992, vol. 123, pp. 313–16.

    Article  CAS  Google Scholar 

  6. D.K. Banerjee, W.J. Boettinger, R.J. Schaefer, and M.E. Williams: in Modeling of Casting, Welding and Advanced Solidification Processes VII, M. Cross and J. Campbell, eds., TMS, Warrendale, PA, 1995, p. 491.

    Google Scholar 

  7. S. Dharwadkar, K. Hilpert, F. Schubert, and V. Venugopal: Z. Metallkd., 1992, vol. 83, p. 744.

    CAS  Google Scholar 

  8. J.S. Zhang, Z.Q. Hu, Y. Murata, M. Morinaga, and N. Yukawa: Metall. Trans. A, 1993, vol. 24A, pp. 2443–50.

    CAS  Google Scholar 

  9. W.D. Cao, R.L. Kennedy, and M.P. Willis: in Superalloys 718, 625 and Various Derivatives, E.A. Loria, ed., TMS, Warrendale, PA, 1991, pp. 147–60.

    Google Scholar 

  10. M.J. Cieslak, T.J. Headley, G.A. Knorovsky, A.D. Romig, Jr., and T. Kollie: Metall. Trans. A, 1990, vol. 21A, pp. 479–88.

    CAS  Google Scholar 

  11. C.V. Robino, J.R. Michael, and M.J. Cieslak: Sci. Technol. Welding Joining, 1997, vol. 2, pp. 220–30.

    CAS  Google Scholar 

  12. T.M. Pollock and W.H. Murphy: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1081–94.

    Google Scholar 

  13. J. Lecomte-Beckers: Metall. Trans. A, 1988, vol. 19A, pp. 2333–40.

    CAS  Google Scholar 

  14. S.N. Tewari, M. Vijayakumar, J.E. Lee, and P.A. Curreri: Mater. Sci. Eng. A, 1991, vol. 141, pp. 97–102.

    Article  Google Scholar 

  15. V.A. Willis and D.G. McCartney: Mater. Sci. Eng. A, 1991, vol. 145, pp. 223–31.

    Article  Google Scholar 

  16. M.A. Taha and W. Kurz: Z. Metallkd., 1981, vol. 72, pp. 546–49.

    CAS  Google Scholar 

  17. ASM Handbook: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 10th ed., ASM, Metals Park, OH, 1992, vol. 2, pp. 1099 and 1116.

  18. R.L. Powell, W.J. Hall, G.W. Burns, M.G. Scroger, and H.H. Plumb: NIST Monographs 125, 1974, pp. 13–17.

  19. J. Schramm: Z. Metallkd., 1941, vol. 33, pp. 381–87.

    CAS  Google Scholar 

  20. W.J. Boettinger and U.R. Kattner: NIST, Gaithersburg, MD, unpublished research, 1999.

  21. R.J. Schaefer, M.D. Vaudin, B.A. Mueller, C.S. Choi, and J. Szekely: in Modeling of Casting, Welding and Advanced Solidification Processes VII, M. Cross and J. Campbell, eds., TMS, Warrendale, PA, 1995, p. 593.

    Google Scholar 

  22. M. Rappaz, C.-A. Gandin, J.-L. Desbiolles, and P. Thevoz: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 695–705.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, R.I., Perepezko, J.H. Liquidus temperature determination in multicomponent alloys by thermal analysis. Metall Mater Trans A 31, 497–501 (2000). https://doi.org/10.1007/s11661-000-0285-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0285-x

Keywords

Navigation