Skip to main content
Log in

An investigation of the effect of fatigue deformation on the residual mechanical properties of Ti-6Al-4V ELI

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Tensile properties, hardness, and Charpy impact toughness of Ti-6Al-4V extralow interstitial (ELI) with equiaxed α and Widmanstätten α structures at various stages of fatigue were investigated. Fatigue crack initiation characteristics of the same alloy were also investigated in this study. In the equiaxed α structure, fatigue cracks initiated mainly at the interface between primary-α grains, while in the Widmanstätten α structure, they initiated across α plates at an angle of around 45 deg to the stress axis. Specimens with the Widmanstätten α structure fractured before adequate fatigue hardening was achieved because a multitude of microcracks readily formed. Specimens with the equiaxed α structure fractured after adequate fatigue hardening developed. Tensile strength, 0.2 pct proof stress, and hardness increased clearly with increasing stress cycles and fatigue steps, particulary in the low-cycle fatigue (LCF) region, while impact toughness and elongation showed a reverse trend. It is suggested, therefore, that the dislocation density multiplies more rapidly near the specimen surface during the early stages of fatigue, while during the later stages of fatigue, dislocation density increases near the center of the specimen. Also, the dislocation multiplication will continue until saturation of the entire specimen has occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.R. Boyer, G. Welsch, and E.W. Collings: Materials Handbook, Titanium Alloys, ASM, Materials Park, OH, 1994, pp. 483–636.

    Google Scholar 

  2. S.R. Seagle: Mater. Sci. Eng. A, 1996, vol. A212, pp. 1–7.

    Google Scholar 

  3. R.R. Boyer: Mater. Sci. Eng. A, 1996, vol. A212, pp. 103–14.

    Google Scholar 

  4. “Standard Specification for Wrought Titanium 6Al-4V ELI Alloy for Surgical Implant,” [ASTM F136-82,] ASTM, Philadelphia, PA, 1994, pp. 19–20.

  5. A. Yamamoto, T. Kobayashi, N. Maruyama, and M. Sumita: J. Biomater., 1996, vol. 14, pp. 158–73.

    CAS  Google Scholar 

  6. H. Hamanaka and T. Tsutiya: J. Iron Steel Inst. Jpn., 1997, vol. 2, pp. 30–35.

    Google Scholar 

  7. Y. Okazaki: J. Jpn. Inst. Met., 1998, vol. 37, pp. 838–42.

    CAS  Google Scholar 

  8. M. Niimomi: Mater. Sci. Eng. A, 1998, vol. A243, pp. 231–36.

    Google Scholar 

  9. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro: Mater. Sci. Eng. A, 1998, vol. A243, pp. 231–36.

    Google Scholar 

  10. M.H. Swain: in Small Crack Test Method, J.M. Larson and J.E. Allison, eds., ASTM, Philadelphia, PA, 1992, pp. 34–56.

    Google Scholar 

  11. T. Kobayashi, I. Yamamoto, and M. Niinomi: J. Testing Eval., 1993, vol. 21, pp. 145–53.

    Article  CAS  Google Scholar 

  12. I.J. Polmear: in Light Alloys, R.W.K. Honeycombe and P. Honcock, eds., Edward Arnold, London, 1998, pp. 248–50.

    Google Scholar 

  13. H. Puschrik, J. Fladischer, G. Lütjering, and R.I. Jaffee: Proc. Titanium ’92, F.H. Fores and I.L. Caplan, eds., TMS, Warrendale, PA, 1992, vol. 1, pp. 131–40.

    Google Scholar 

  14. K. Minakawa: J. Iron Steel Inst. Jpn., 1989, vol. 75, pp. 36–43.

    Google Scholar 

  15. T. Takemoto, J.K. Jing, T. Tsakarakos, S. Wessman, and I.R. Kramer: Metall. Trans. A, 1983, vol. 14A, pp. 127–32.

    Google Scholar 

  16. Division of Fatigue and Microstructure Committee of Fatigue: Soc. Mater. Sci. Jpn., 1994, pp. 47–64.

  17. T. Akahori, M. Niinomi, and A. Ozeki: J. Jpn. Inst. Met., 1998, vol. 62, pp. 952–60.

    CAS  Google Scholar 

  18. E.S. Kayali and A. Plumtree: Metall. Trans. A, 1982, vol. 13A, pp. 1033–41.

    CAS  Google Scholar 

  19. J.C. Grosskerevts and G.G. Shaw: Acta Metall., 1972, vol. 20, pp. 523–28.

    Article  Google Scholar 

  20. N.M. Grinberg, A.R. Smirnov, V.A. Moskaienko, L.F. Yakovenko, and V.I. Zmievsky: Mater. Sci. Eng. A, 1993, vol. 165, pp. 125–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akahori, T., Niinomi, M. & Fukunaga, KI. An investigation of the effect of fatigue deformation on the residual mechanical properties of Ti-6Al-4V ELI. Metall Mater Trans A 31, 1937–1948 (2000). https://doi.org/10.1007/s11661-000-0221-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0221-0

Keywords

Navigation