Skip to main content

Advertisement

Log in

Conversion of osteoporotic vertebral fracture severity score to osteoporosis T-score equivalent status: a framework and a comparative study of Hong Kong Chinese and Rome Caucasian older women

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

We explored how the severity of radiological osteoporotic vertebral fracture (OVF) can be converted to the equivalent T-score values.

Introduction

To perform a study to define what portion of older community women with what severity of radiographic OVF correspond to what low T-score status.

Methods

There were age-matched 301 Italian community women and 301 Chinese community women (sub-group A, age, 73.6 ± 6.1 years). In addition, Chinese sub-groups B and C included 110 community women (age, 68.9 ± 5.5 years) and 101 community women (age: 82.2 ± 4.3 years), respectively. For each vertebra in women, a score of 0, − 0.5, − 1, − 1.5, − 2, − 2.5, and − 3 was assigned for no OVF or OVF of < 20%, ≥ 20 ~ 25%, ≥ 25% ~ 1/3, ≥ 1/3 ~ 40%, ≥ 40%–2/3, and ≥ 2/3 vertebral height loss, respectively, OVFss was defined as the summed score of vertebrae T4 to L5. OVFss and T-scores were ranked from the smallest to the largest values.

Results

For the Chinese total group (sub-groups A, B, and C together), OVFss = − 1 corresponded to lowest T-score (lowest T-score of lumbar spine, femoral neck, and total hip) of − 3.4 ~ − 3.2. OVFss ≤ − 1.5 corresponded to femoral neck T-score ≤ − 2.5. OVFss = −1.5 corresponded to a mean femoral neck T-score of − 3.0, − 2.6, and − 2.4, among Chinese sub-groups B, A, and C subjects, respectively. For Italians, all cases with OVFss ≤ − 1 had lowest T-score ≤ − 2.5. For cases with femoral neck T-score = − 2.5, 41.7% had OVFss = − 1.5, and 58.3% had OVFss = − 1.

Conclusion

For older women, statistically OVFss ≤ − 1 suggests this subject is osteoporotic according to lowest T-score. If using femoral neck T-score, OVFss ≤ − 1.5 qualifies osteoporosis diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siris ES, Genant HK, Laster AJ, Chen P, Misurski DA, Krege JH (2007) Enhanced prediction of fracture risk combining vertebral fracture status and BMD. Osteoporos Int 18:761–770

    CAS  PubMed  Google Scholar 

  2. Johansson L, Sundh D, Magnusson P, Rukmangatharajan K, Mellström D, Nilsson AG, Lorentzon M (2020) Grade 1 vertebral fractures identified by densitometric lateral spine imaging predict incident major osteoporotic fracture independently of clinical risk factors and bone mineral density in older women. J Bone Miner Res 35:1942–1951

    CAS  PubMed  Google Scholar 

  3. Wang YX, Xiao BH, Su Y, Leung JCS, Lam PMS, Kwok TCY (2022) Fine-tuning the cutpoint T-score as an epidemiological index with high specificity for osteoporosis: methodological considerations for the Chinese population. Quant Imaging Med Surg 12:882–885

    PubMed  PubMed Central  Google Scholar 

  4. Wang YX, Xiao BH (2022) Estimations of bone mineral density defined osteoporosis prevalence and cutpoint T-score for defining osteoporosis among older Chinese population: a framework based on relative fragility fracture risks. Quant Imaging Med Surg 12:4346–4360

    PubMed  PubMed Central  Google Scholar 

  5. Wáng YXJ (2022) An update of our understanding of radiographic diagnostics for prevalent osteoporotic vertebral fracture in elderly women. Quant Imaging Med Surg 12:3495–3514

    PubMed  PubMed Central  Google Scholar 

  6. Kadowaki E, Tamaki J, Iki M, Sato Y, Chiba Y, Kajita E, Kagamimori S, Kagawa Y, Yoneshima H (2010) Prevalent vertebral deformity independently increases incident vertebral fracture risk in middle-aged and elderly Japanese women: the Japanese Population-based Osteoporosis (JPOS) Cohort Study. Osteoporos Int 21:1513–1522

    CAS  PubMed  Google Scholar 

  7. Black DM, Arden NK, Palermo L, Pearson J, Cummings SR (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14:821–828

    CAS  PubMed  Google Scholar 

  8. Kanis JA, Adachi JD, Cooper C, Clark P, Cummings SR, Diaz-Curiel M, Harvey N, Hiligsmann M, Papaioannou A, Pierroz DD, Silverman SL, Szulc P, Epidemiology and Quality of Life Working Group of IOF (2013) Standardising the descriptive epidemiology of osteoporosis: recommendations from the Epidemiology and Quality of Life Working Group of IOF. Osteoporos Int 24:2763–4

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kanis JA, Cooper C, Rizzoli R, Reginster JY, Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis (ESCEO) and the Committees of Scientific Advisors and National Societies of the International Osteoporosis Foundation (IOF) (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30:3–44

    CAS  PubMed  Google Scholar 

  10. Eastell R, Rosen CJ, Black DM, Cheung AM, Murad MH, Shoback D (2019) Pharmacological management of osteoporosis in postmenopausal women: an Endocrine Society* Clinical Practice Guideline. J Clin Endocrinol Metab 104:1595–1622

    PubMed  Google Scholar 

  11. Sanchez-Rodriguez D, Bergmann P, Body JJ, Cavalier E, Gielen E, Goemaere S, Lapauw B, Laurent MR, Rozenberg S, Honvo G, Beaudart C, Bruyère O (2020) The Belgian Bone Club 2020 guidelines for the management of osteoporosis in postmenopausal women. Maturitas 139:69–89

    CAS  PubMed  Google Scholar 

  12. Nuti R, Brandi ML, Checchia G, Di Munno O, Dominguez L, Falaschi P, Fiore CE, Iolascon G, Maggi S, Michieli R, Migliaccio S, Minisola S, Rossini M, Sessa G, Tarantino U, Toselli A, Isaia GC (2019) Guidelines for the management of osteoporosis and fragility fractures. Intern Emerg Med 14:85–102

    PubMed  Google Scholar 

  13. (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1–129

  14. Fink HA, Milavetz DL, Palermo L, Nevitt MC, Cauley JA, Genant HK, Black DM, Ensrud KE (2005) What proportion of incident radiographic vertebral deformities is clinically diagnosed and vice versa? J Bone Miner Res 20:1216–1222

    PubMed  Google Scholar 

  15. Cong E, Walker MD (2014) The Chinese skeleton: insights into microstructure that help to explain the epidemiology of fracture. Bone Res 2:14009

    PubMed  PubMed Central  Google Scholar 

  16. Wáng YXJ, Che-Nordin N, Deng M, Leung JCS, Kwok AWL, He LC, Griffith JF, Kwok TCY, Leung PC (2019) Osteoporotic vertebral deformity with endplate/cortex fracture is associated with higher further vertebral fracture risk: the Ms. OS (Hong Kong) study results. Osteoporos Int 30:897–905

    PubMed  Google Scholar 

  17. Wáng YXJ, Che-Nordin N, Leung JCS, Man Yu BW, Griffith JF, Kwok TCY (2020) Elderly men have much lower vertebral fracture risk than elderly women even at advanced age: the MrOS and MsOS (Hong Kong) year 14 follow-up radiology results. Arch Osteoporos 15:176

    PubMed  Google Scholar 

  18. Wáng YXJ, Diacinti D, Leung JCS, Iannacone A, Kripa E, Kwok TCY, Diacinti D (2021) Much lower prevalence and severity of radiographic osteoporotic vertebral fracture in elderly Hong Kong Chinese women than in age-matched Rome Caucasian women: a cross-sectional study. Arch Osteoporos 16:174

    PubMed  Google Scholar 

  19. Wáng YXJ, Diacinti D, Leung JCS, Iannacone A, Kripa E, Kwok TCY, Diacinti D (2022) Further evidence supports a much lower prevalence of radiographic osteoporotic vertebral fracture in Hong Kong Chinese women than in Italian Caucasian women. Arch Osteoporos 17:13

    PubMed  Google Scholar 

  20. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, Eisman JA, Fujiwara S, Kroger H, Mellstrom D, Meunier PJ, Melton LJ 3rd, O’Neill T, Pols H, Reeve J, Silman A, Tenenhouse A (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–1194

    PubMed  Google Scholar 

  21. Wáng YXJ, Diacinti D, Yu W, Cheng XG, Nogueira-Barbosa MH, Che-Nordin N, Guglielmi G, Ruiz Santiago F (2020) Semi-quantitative grading and extended semiquantitative grading for osteoporotic vertebral deformity: a radiographic image database for education and calibration. Ann Transl Med 8:398

    PubMed  PubMed Central  Google Scholar 

  22. Wáng YXJ, Santiago FR, Deng M, Nogueira-Barbosa MH (2017) Identifying osteoporotic vertebral endplate and cortex fractures. Quant Imaging Med Surg 7:555–591

    PubMed  PubMed Central  Google Scholar 

  23. Wáng YXJ, Deng M, He LC, Che-Nordin N, Santiago FR (2018) Osteoporotic vertebral endplate and cortex fractures: a pictorial review. J Orthop Translat 15:35–49

    PubMed  PubMed Central  Google Scholar 

  24. Lynn HS, Lau EM, Au B, Leung PC (2005) Bone mineral density reference norms for Hong Kong Chinese. Osteoporos Int 16:1663–1668

    CAS  PubMed  Google Scholar 

  25. Looker AC, Borrud LG, Hughes JP, Fan B, Shepherd JA, Melton LJ 3rd (2012) Lumbar spine and proximal femur bone mineral density, bone mineral content, and bone area: United States, 2005–2008. National Center for Health Statistics. Vital Health Stat 11(251)

  26. Lewiecki EM (2005) Update on bone density testing. Curr Osteoporos Rep 3:136–42

    PubMed  Google Scholar 

  27. Miller PD, Njeh CF, Jankowski LG, Lenchik L (2002) International Society for Clinical Densitometry Position Development Panel and Scientific Advisory Committee (2002) What are the standards by which bone mass measurement at peripheral skeletal sites should be used in the diagnosis of osteoporosis? J Clin Densitom 5(Suppl):S39-45

    PubMed  Google Scholar 

  28. Alarkawi D, Bliuc D, Nguyen TV, Eisman JA, Center JR (2016) Contribution of Lumbar Spine BMD to Fracture Risk in Individuals With T-Score Discordance. J Bone Miner Res 31:274–280

    PubMed  Google Scholar 

  29. Finkelstein JS, Lee ML, Sowers M, Ettinger B, Neer RM, Kelsey JL, Cauley JA, Huang MH, Greendale GA (2002) Ethnic variation in bone density in premenopausal and early perimenopausal women: effects of anthropometric and lifestyle factors. J Clin Endocrinol Metab 87:3057–3067

    CAS  PubMed  Google Scholar 

  30. Walker MD, Liu XS, Zhou B, Agarwal S, Liu G, McMahon DJ, Bilezikian JP, Guo XE (2013) Premenopausal and postmenopausal differences in bone microstructure and mechanical competence in Chinese-American and white women. J Bone Miner Res 28:1308–1318

    PubMed  Google Scholar 

  31. Wang YXJ, Diacinti D, Griffith JF, Yeung DKW, Iannacone A, Kripa E, Leung JCS, Kwok TCY (2022) Diacinti D (2022) Lumbar L3 marrow fat content in older Italian women is not apparently higher than in older Chinese women. Ann Transl Med 10:648

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang X, Dai Z, Lau EHY, Cui C, Lin H, Qi J, Ni W, Zhao L, Lv Q, Gu J, Lin Z (2020) Prevalence of bone mineral density loss and potential risk factors for osteopenia and osteoporosis in rheumatic patients in China: logistic regression and random forest analysis. Ann Transl Med 8:226

    PubMed  PubMed Central  Google Scholar 

  33. Tao Y, Tang S, Huang X, Wang H, Zhou A, Zhang J (2021) Prevalence and risk factors of osteoporosis in Chinese postmenopausal women awaiting total knee arthroplasty. Clin Interv Aging 16:379–387

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang YXJ (2022) Estimation of osteoporosis prevalence among a population is reasonable only after the concerned reference bone mineral density database and cutpoint T-score have been validated. Osteoporos Int (in press). https://doi.org/10.1007/s00198-022-06538-0

  35. Wu XP, Liao EY, Huang G, Dai RC, Zhang H (2003) A comparison study of the reference curves of bone mineral density at different skeletal sites in native Chinese, Japanese, and American Caucasian women. Calcif Tissue Int 73:122–132

    CAS  PubMed  Google Scholar 

  36. Wáng YXJ, Deng M, Griffith JF, Kwok AWL, Leung JCS, Lam PMS, Yu BWM, Leung PC, Kwok TCY (2022) “Healthier Chinese spine”: an update of osteoporotic fractures in men (MrOS) and in women (MsOS) Hong Kong spine radiograph studies. Quant Imaging Med Surg 12:2090–2105

    PubMed  PubMed Central  Google Scholar 

  37. Masud T, Langley S, Wiltshire P, Doyle DV, Spector TD (1993) Effect of spinal osteophytosis on bone mineral density measurements in vertebral osteoporosis. BMJ 307:172–173

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Muraki S, Yamamoto S, Ishibashi H, Horiuchi T, Hosoi T, Orimo H, Nakamura K (2004) Impact of degenerative spinal diseases on bone mineral density of the lumbar spine in elderly women. Osteoporos Int 15:724–728

    PubMed  Google Scholar 

  39. Pham T, Azulay-Parrado J, Champsaur P, Chagnaud C, Legré V, Lafforgue P (2005) “Occult” osteoporotic vertebral fractures: vertebral body fractures without radiologic collapse. Spine (Phila Pa 1976) 30:2430–5

    PubMed  Google Scholar 

  40. Kim YJ, Chae SU, Kim GD, Park KH, Lee YS, Lee HY (2013) Radiographic detection of osteoporotic vertebral fracture without collapse. J Bone Metab 20:89–94

    PubMed  PubMed Central  Google Scholar 

  41. Du EZ (2022) Wang YXJ (2002) CT detects more osteoporotic endplate depressions than radiograph: a descriptive comparison of 76 vertebrae. Osteoporos Int 33:1569–1577

    PubMed  Google Scholar 

  42. Deng M, Kwok TCY, Leung JCS, Leung PC, Wáng YXJ (2018) All osteoporotically deformed vertebrae with >34% height loss have radiographically identifiable endplate/cortex fracture. J Orthop Translat 14:63–66

    PubMed  PubMed Central  Google Scholar 

  43. Wáng YXJ, Liu WH, Diacinti D, Yang DW, Iannacone A, Wang XR, Kripa E, Che-Nordin N, Diacinti D (2020) Diagnosis and grading of radiographic osteoporotic vertebral deformity by general radiologists after a brief self-learning period. J Thorac Dis 12:4702–4710

    PubMed  PubMed Central  Google Scholar 

  44. Lentle BC, Prior JC (2022) Osteoporotic vertebral fracture (OVF): diagnosis requires an informed observer. Osteoporos Int 33:1409–1410

    CAS  PubMed  Google Scholar 

  45. Diacinti D, Vitali C, Gussoni G, Pisani D, Sinigaglia L, Bianchi G, Nuti R, Gennari L, Pederzoli S, Grazzini M, Valerio A, Mazzone A, Nozzoli C, Campanini M, Albanese CV, Research Department of FADOI (2017) Misdiagnosis of vertebral fractures on local radiographic readings of the multicentre POINT (Prevalence of Osteoporosis in INTernal medicine) study. Bone 101:230–235

    PubMed  Google Scholar 

  46. Kerkeni S, Kolta S, Fechtenbaum J, Roux C (2019) Spinal deformity index (SDI) is a good predictor of incident vertebral fractures. Osteoporos Int 20:1547–1552

    Google Scholar 

  47. Delmas PD, Genant HK, Crans GG, Stock JL, Wong M, Siris E, Adachi JD (2003) Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone 33:522–532

    CAS  PubMed  Google Scholar 

  48. Lunt M, O’Neill TW, Felsenberg D, Reeve J, Kanis JA, Cooper C, Silman AJ, European Prospective Osteoporosis Study Group (2003) Characteristics of a prevalent vertebral deformity predict subsequent vertebral fracture: results From the European Prospective Osteoporosis Study (EPOS). Bone 33:505–13

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yì Xiáng J. Wáng or Daniele Diacinti.

Ethics declarations

Conflicts of interest

Author YXJ Wáng is the founder of Yingran Medicals Ltd, which develops medical image-based diagnostics software. Authors Davide Diacinti, JCS Leung, A Iannacone, E Kripa, TCY Kwok, and Daniele Diacinti, all declare no conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 54 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wáng, Y.X.J., Diacinti, D., Leung, J.C.S. et al. Conversion of osteoporotic vertebral fracture severity score to osteoporosis T-score equivalent status: a framework and a comparative study of Hong Kong Chinese and Rome Caucasian older women. Arch Osteoporos 18, 1 (2023). https://doi.org/10.1007/s11657-022-01178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-022-01178-7

Keywords

Navigation