Skip to main content

Advertisement

Log in

The Tromsø Study: Fit Futures: a study of Norwegian adolescents’ lifestyle and bone health

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

Bone mass achievement predicts later fracture risk. This population-based study describes bone mineral density (BMD) levels and associated factors in Norwegian adolescents. Compared with international reference ranges, BMD levels appear higher and physical activity levels are positively associated with BMD.

Purpose

Norway has one of the highest reported incidences of osteoporotic fractures. Maximisation of peak bone mass may prevent later fractures. This population-based study compared BMD levels of Norwegian adolescents with international reference ranges and explored associated factors.

Methods

All first-year upper-secondary school students, aged 15–19 years in the Tromsø region were invited to the Fit Futures study in 2010–2011. Over 90 % of the invited participants attended, 508 girls and 530 boys. BMD was measured at total hip, femoral neck and total body by dual X-ray absorptiometry. Lifestyle variables were collected by self-administered questionnaires and interviews. All analyses were performed sex stratified, using linear regression models.

Results

In girls, mean BMD (SD) was 1.060 g/cm2 (0.124), 1.066 g/cm2 (0.123) and 1.142 g/cm2 (0.077) at the total hip, femoral neck and total body, respectively. In boys, corresponding values were 1.116 (0.147), 1.103 (0.150) and 1.182 (0.097), with significant higher values than the Lunar pediatric reference at 16 years of age. In girls, height and self-reported intensive physical activity of more than 4 h a week and early sexual maturation were positively associated with BMD at both femoral sites (p < 0.047). Among boys age, height, body mass index, physical activity and alcohol intake were positively (p < 0.038), whereas early stages of sexual maturation and smoking was negatively (p < 0.047) related to BMD.

Conclusions

Despite the heavy fracture burden, Norwegian adolescents’ BMD levels are higher than age-matched Caucasians. Physical activity is associated with 1 SD increased BMD levels in those involved in competition or hard training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Borgstrom F et al (2007) The societal burden of osteoporosis in Sweden. Bone 40(6):1602–1609

    Article  PubMed  Google Scholar 

  2. Dimai HP et al (2012) Economic burden of osteoporotic fractures in Austria. Health Econ Rev 2(1):12

    Article  PubMed Central  PubMed  Google Scholar 

  3. Hansen L et al (2013) A health economic analysis of osteoporotic fractures: who carries the burden? Arch Osteoporos 8(1–2):126

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kanis JA et al (2012) A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int 23(9):2239–2256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312(7041):1254–1259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Rizzoli R et al (2010) Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 46(2):294–305

    Article  PubMed  Google Scholar 

  7. The Tromsø Study. Available from: http://www.tromsostudy.com. Accessed 22 Oct 2013

  8. Omsland TK et al (2008) In vivo and in vitro comparison of densitometers in the NOREPOS study. J Clin Densitom 11(2):276–282

    Article  PubMed  Google Scholar 

  9. Lunar enCore, Supplement til pediatrisk referansedata. 1. revision ed. 2010-Nov: GE Healthcare

  10. Cole TJ et al (2007) Body mass index cut offs to define thinness in children and adolescents: international survey. BMJ 335(7612):194

    Article  PubMed Central  PubMed  Google Scholar 

  11. Cole TJ et al (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320(7244):1240–1243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. BMI-classes, WHO. Available from: http://apps.who.int/bmi/index.jsp?introPage=intro_3.html. Accessed 22 Oct 2013

  13. Koo MM, Rohan TE (1997) Accuracy of short-term recall of age at menarche. Ann Hum Biol 24(1):61–64

    Article  CAS  PubMed  Google Scholar 

  14. Petersen A et al (1988) A self-report measure of pubertal status: reliability, validity, and initial norms. J Youth Adolesc 17(2):117–133

    Article  CAS  PubMed  Google Scholar 

  15. Graff-Iversen S et al (2008) Two short questionnaires on leisure-time physical activity compared with serum lipids, anthropometric measurements and aerobic power in a suburban population from Oslo, Norway. Eur J Epidemiol 23(3):167–174

    Article  PubMed  Google Scholar 

  16. Lofthus CM et al (2001) Epidemiology of hip fractures in Oslo, Norway. Bone 29(5):413–418

    Article  CAS  PubMed  Google Scholar 

  17. Lofthus CM et al (2008) Epidemiology of distal forearm fractures in Oslo, Norway. Osteoporos Int 19(6):781–786

    Article  CAS  PubMed  Google Scholar 

  18. Rosvold Berntsen GK et al (2000) The Tromso study: determinants of precision in bone densitometry. J Clin Epidemiol 53(11):1104–1112

    Article  CAS  PubMed  Google Scholar 

  19. Oldroyd B, Smith AH, Truscott JG (2003) Cross-calibration of GE/Lunar pencil and fan-beam dual energy densitometers—bone mineral density and body composition studies. Eur J Clin Nutr 57(8):977–987

    Article  CAS  PubMed  Google Scholar 

  20. Crabtree NJ et al (2005) Pediatric in vivo cross-calibration between the GE Lunar Prodigy and DPX-L bone densitometers. Osteoporos Int 16(12):2157–2167

    Article  PubMed  Google Scholar 

  21. Dorn LD et al (2013) Longitudinal impact of substance use and depressive symptoms on bone accrual among girls aged 11-19 years. J Adolesc Health 52(4):393–399

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kolle E, Torstveit MK, Sundgot-Borgen J (2005) Bone mineral density in Norwegian premenopausal women. Osteoporos Int 16(8):914–920

    Article  PubMed  Google Scholar 

  23. Kroger H et al (1992) Bone densitometry of the spine and femur in children by dual-energy x-ray absorptiometry. Bone Miner 17(1):75–85

    Article  CAS  PubMed  Google Scholar 

  24. Maynard LM et al (1998) Total-body and regional bone mineral content and areal bone mineral density in children aged 8-18 y: the Fels Longitudinal Study. Am J Clin Nutr 68(5):1111–1117

    CAS  PubMed  Google Scholar 

  25. Júliusson PB et al (2009) Vekstkurver for norske barn. Tidsskr Nor Legeforen 129(4):281–286

    Article  Google Scholar 

  26. Gilsanz V et al (2011) Age at onset of puberty predicts bone mass in young adulthood. J Pediatr 158(1):100–105, 105 e1–2

    Article  PubMed  Google Scholar 

  27. Deere K et al (2012) Habitual levels of high, but not moderate or low, impact activity are positively related to hip BMD and geometry: results from a population-based study of adolescents. J Bone Miner Res 27(9):1887–1895

    Article  PubMed Central  PubMed  Google Scholar 

  28. Arabi A et al (2004) Bone mineral density by age, gender, pubertal stages, and socioeconomic status in healthy Lebanese children and adolescents. Bone 35(5):1169–1179

    Article  PubMed  Google Scholar 

  29. Hoiberg M et al (2007) Population-based reference values for bone mineral density in young men. Osteoporos Int 18(11):1507–1514

    Article  CAS  PubMed  Google Scholar 

  30. Moretto de Oliveria MR et al (2011) Bone mineral density in healthy female adolescents according to age, bone age and pubertal breast stage. Open Orthop J 5:324–330

    Article  PubMed  Google Scholar 

  31. Gracia-Marco L et al (2010) Bone mass and bone metabolism markers during adolescence: the HELENA Study. Horm Res Paediatr 74(5):339–350

    Article  CAS  PubMed  Google Scholar 

  32. Eleftheriou KI et al (2013) Bone structure and geometry in young men: the influence of smoking, alcohol intake and physical activity. Bone 52(1):17–26

    Article  PubMed  Google Scholar 

  33. Fan B et al (2010) Does standardized BMD still remove differences between Hologic and GE-Lunar state-of-the-art DXA systems? Osteoporos Int 21(7):1227–1236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Heaney RP et al (2000) Peak bone mass. Osteoporos Int 11(12):985–1009

    Article  CAS  PubMed  Google Scholar 

  35. Dimitri P et al (2012) Obesity is a risk factor for fracture in children but is protective against fracture in adults: a paradox. Bone 50(2):457–466

    Article  CAS  PubMed  Google Scholar 

  36. Clark EM, Ness AR, Tobias JH (2006) Adipose tissue stimulates bone growth in prepubertal children. J Clin Endocrinol Metab 91(7):2534–2541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Timpson NJ et al (2009) How does body fat influence bone mass in childhood? A Mendelian randomization approach. J Bone Miner Res 24(3):522–533

    Article  PubMed Central  PubMed  Google Scholar 

  38. Javaid MK et al (2011) Growth in childhood predicts hip fracture risk in later life. Osteoporos Int 22(1):69–73

    Article  CAS  PubMed  Google Scholar 

  39. Seeman E (2002) Pathogenesis of bone fragility in women and men. Lancet 359(9320):1841–1850

    Article  PubMed  Google Scholar 

  40. Bielemann RM, Martinez-Mesa J, Gigante DP (2013) Physical activity during life course and bone mass: a systematic review of methods and findings from cohort studies with young adults. BMC Musculoskelet Disord 14:77

    Article  PubMed Central  PubMed  Google Scholar 

  41. Logstein B, Blekesaune A, Almas R (2013) Physical activity among Norwegian adolescents—a multilevel analysis of how place of residence is associated with health behaviour: the Young-HUNT study. Int J Equity Health 12:56

    Article  PubMed Central  PubMed  Google Scholar 

  42. Yoon V, Maalouf NM, Sakhaee K (2012) The effects of smoking on bone metabolism. Osteoporos Int 23(8):2081–2092

    Article  CAS  PubMed  Google Scholar 

  43. Rudang R et al (2012) Smoking is associated with impaired bone mass development in young adult men: a 5-year longitudinal study. J Bone Miner Res 27(10):2189–22197

    Article  PubMed  Google Scholar 

  44. Wosje KS, Kalkwarf HJ (2007) Bone density in relation to alcohol intake among men and women in the United States. Osteoporos Int 18(3):391–400

    Article  CAS  PubMed  Google Scholar 

  45. Berg KM et al (2008) Association between alcohol consumption and both osteoporotic fracture and bone density. Am J Med 121(5):406–418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the study participants, the staff at the Centre for Clinical Research and Education, UNN and the Fit Futures administration. The Norwegian Osteoporosis Association supported paediatric software, and the North-Norway Health Authorities funded this work.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Winther.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winther, A., Dennison, E., Ahmed, L.A. et al. The Tromsø Study: Fit Futures: a study of Norwegian adolescents’ lifestyle and bone health. Arch Osteoporos 9, 185 (2014). https://doi.org/10.1007/s11657-014-0185-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-014-0185-0

Keywords

Navigation