Skip to main content

Advertisement

Log in

Advances in Research on Anticancer Properties of Salidroside

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Salidroside is a phenolic secondary metabolite present in plants of the genus Rhodiola, and studies investigating its extensive pharmacological activities and mechanisms have recently attracted increasing attention. This review summarizes the progress of recent research on the antiproliferative activities of salidroside and its effects on breast, ovarian, cervical, colorectal, lung, liver, gastric, bladder, renal, and skin cancer as well as gliomas and fibrosarcomas. Thus, it provides a reference for the further development and utilization of salidroside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller KD, Siegei RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 2016;66:271–289.

    Google Scholar 

  2. Apetoh L, Ladoire S, Coukos G, et al. Combining immunotherapy and anticancer agents: the right path to achieve cancer cure? Ann Oncol 2015;26:1813–1823.

    CAS  PubMed  Google Scholar 

  3. Qi FH, Zhao L, Zhou AY, et al. The advantages of using traditional Chinese medicine as an adjunctive therapy in the whole course of cancer treatment instead of only terminal stage of cancer. Biosci Trends 2015;9:16–34.

    CAS  PubMed  Google Scholar 

  4. Ye L, Jia Y, Ji KE, et al. Traditional Chinese medicine in the prevention and treatment of cancer and cancer metastasis. Oncol Lett 2015;10:1240–1250.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Grech-Baran M, Syklowska-Baranek K, Pietrosiuk A. Approaches of Rhodiola kirilowii and Rhodiola rosea field cultivation in Poland and their potential health benefits. Ann Agric Environ Med 2015;22:281–285.

    CAS  PubMed  Google Scholar 

  6. Abidov M, Grachev S, Seifulla RD, et al. Extract of Rhodiola rosea radix reduces the level of C-reactive protein and creatinine kinase in the blood. Bull Exp Biol Med 2004;138:63–64.

    CAS  PubMed  Google Scholar 

  7. Van Diermen D, Marston A, Bravo J, Reist M, et al. Monoamine oxidase inhibition by Rhodiola rosea L. roots. J Ethnopharmacol 2009;22:397–401.

    Google Scholar 

  8. Calcabrini C, De Bellis R, Mancini U, et al. Rhodiola rosea ability to enrich cellular antioxidant defences of cultured human keratinocytes. Arch Dermatol Res 2010;302:191–200.

    PubMed  Google Scholar 

  9. Skopińska-Rózewska E, Malinowski M, Wasiutyński A, et al. The influence of Rhodiola quadrifida 50% hydro-alcoholic extract and salidroside on tumorinduced angiogenesis in mice. Pol J Vet Sci 2008;11:97–104.

    PubMed  Google Scholar 

  10. Cai Z, Li W, Wang H, et al. Antitumor effects of a purified polysaccharide from Rhodiola rosea and its action mechanism. Carbohyd Polymers 2012;90:1296–1300.

    Google Scholar 

  11. Wang H, Zhou G, Gao X, et al. Acetylcholinesterase inhibitory-active components of Rhodiola rosea L. Food Chem 2007;105:24–27.

    CAS  Google Scholar 

  12. Chiang HM, Chen HC, Wu CS et al. Rhodiola plants: chemistry and biological activity. J Food Drug Anal 2015;23:359–369.

    CAS  PubMed  Google Scholar 

  13. Chang XY, Zhang K, Zhou R, et al. Cardioprotective effects of salidroside on myocardial ischemia–reperfusion injury in coronary artery occlusion-induced rats and Langendorff-perfused rat hearts. Int J Cardiol 2016;215:532–544.

    PubMed  Google Scholar 

  14. Xu ZW, Chen X, Jin XH, et al. SILAC-based proteomic analysis reveals that salidroside antagonizes cobalt chloride-induced hypoxic effects by restoring the tricarboxylic acid cycle in cardiomyocytes. J Proteomics 2016;130:211–220.

    CAS  PubMed  Google Scholar 

  15. Zhao XY, Jin LH, Shen N, et al. Salidroside inhibits endogenous hydrogen peroxide induced cytotoxicity of endothelial cell. Biol Pharm Bull 2013;36:1773–1778.

    CAS  PubMed  Google Scholar 

  16. Wang S, He H, Chen L, et al. Protective effects of salidroside in the MPTP/MPP-induced model of Parkinson’s disease through ROS-NO-related mitochondrion pathway. Mol Neurobiol 2015;51:18–28.

    CAS  Google Scholar 

  17. Wang J, Xiao L, Zhu LP, et al. The effect of synthetic salidroside on cytokines and airway inflammation of asthma induced by diisocyanate (TDI) in mice by regulating GATA3/T-bet. Inflammation 2015;38:697–704.

    CAS  PubMed  Google Scholar 

  18. Udintsev SN, Shakhov VP. The role of humoral factors of regenerating liver in the development of experimental tumors and the effect of Rhodiola rosea extract on this process. Neoplasma 1991;38:323–331.

    CAS  PubMed  Google Scholar 

  19. Nandi S, Guzman RC, Yang J. Hormones and mammary carcinogenesis in mice, rats, and humans: a unifying hypothesis. Proc Natl Acad Sci USA 1995;92:3650–3657.

    CAS  PubMed  Google Scholar 

  20. Saji S, Kuroi K. Application of selective estrogen receptor modulators for breast cancer treatment according to their intrinsic nature. Breast Cancer 2008;15:262–269.

    PubMed  Google Scholar 

  21. Hu XL, Lin SX, Yu DH, et al. A preliminary study: the anti-proliferation effect of salidroside on different human cancer cell lines. Cell Biol Toxicol 2010;26:499–507.

    CAS  PubMed  Google Scholar 

  22. Hu XL, Zhang XQ, Qiu SF, et al. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells. Biochem Biophys Res Commun 2010;398:62–67.

    CAS  PubMed  Google Scholar 

  23. Zhao G, Shi AP, Fan ZM, et al. Salidroside inhibits the growth of human breast cancer in vitro and in vivo. Oncol Rep 2015;33:2553–2560.

    CAS  PubMed  Google Scholar 

  24. Kang DY, Sp N, Kim DH, et al. Salidroside inhibits migration, invasion and angiogenesis of MDA MB 231 TNBC cells by regulating EGFR/Jak2/STAT3 signaling via MMP2. Int J Oncol 2018;53:877–885.

    CAS  PubMed  Google Scholar 

  25. Landen CN, Birrer MJ, Sook AK. Early events in the pathogenesis of epithelial ovarian cancer. J Clin Oncol 2008;26:995–1005.

    PubMed  Google Scholar 

  26. Paik ES, Kim JH, Kim TJ, et al. Prognostic significance of normall-sized ovary in advanced serous epithelial ovarian cancer. J Gynecol Oncol 2018;29:13.

    Google Scholar 

  27. Westin SN, Herzog TJ, Coleman RL. Investigational agents in development for the treatment of ovarian cancer. Invest New Drugs 2013;31:213–229.

    CAS  PubMed  Google Scholar 

  28. Yu G, Li N, Zhao Y, et al. Salidroside induces apoptosis in human ovarian cancer SKOV3 and A2780 cells through the p53 signaling pathway. Oncol Lett 2018;15:6513–6518.

    PubMed  PubMed Central  Google Scholar 

  29. Falomo ME, Ferroni L, Tocco I, et al. Immunomodulatory role of adipose-derived stem cells on equine endometriosis. Biomed Res Int 2015;2005:293–307.

    Google Scholar 

  30. Seo WG, Pae HO, Oh GS, et al. The aqueous extract of Rhodiola sachalinensis root enhances the expression of inducible nitric oxide synthase gene in RAW264.7 macrophages. J Ethnopharmacol 2001;76:119–123.

    CAS  PubMed  Google Scholar 

  31. Ramathuba DU, Ngambi D, Khoza LB, et al. Knowledge, attitudes and practices regarding cervical cancer prevention at Thulamela Municipality of Vhembe District in Limpopo Province. Afr J Prim Health Care Fam Med 2016;8:1–7.

    Google Scholar 

  32. Li H, Wu X, Cheng X. Advances in diagnosis and treatment of metastatic cervical cancer. J Gynecol Oncol 2016;27:43.

    Google Scholar 

  33. Zhang Y, Dong TR, Ni JH. The Study of Salidroside on Inhibition of Cervical Cancer HeLa Cells Proliferation. J Int Obstet Gynecol 2017;44:396–398.

    Google Scholar 

  34. Zhang LX, Wang T, Niu CQ. Effect and significance of salidroside on Eagl expression in mouse cervical cancer xenograft. Chongqing Med (Chin) 2017;46:3470–3476.

    Google Scholar 

  35. Gao J, Luo W, Wang Q, et al. Effect of salidroside on proliferation and IMP3 expression of cervical cancer Siha cells. Chongqing Med (Chin) 2016;45:3849–3851.

    Google Scholar 

  36. Favoriti P, Carbone G, Greco M, et al. Worldwide burden of colorectal cancer: a review. Updates Surg 2016;68:7–11.

    PubMed  Google Scholar 

  37. Wang W, Liu J, Qi J, et al. Downregulation of RLIP76 is associated with vincristine resistance in human colorectal cancer HCT-8/VCR cells. Int J Oncol 2016;49:1505–1512.

    PubMed  Google Scholar 

  38. Oddo D, Sennott EM, Barault L, et al. Molecular landscape of acquired resistance to targeted therapy combinations in BRAF-mutant colorectal cancer. Cancer Res 2016;76:4504–4515.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang Z, Zhang L, Ni Z, et al. Resveratrol induces AMPK-dependent MDR1 inhibition in colorectal cancer HCT116/L-OHP cells by preventing activation of NF-κB signaling and suppressing cAMP-responsive element transcriptional activity. Tumour Biol 2015;36:9499–9510.

    CAS  PubMed  Google Scholar 

  40. Shi XM, Zhao W, Yang YB, et al. Salidroside could enhance the cytotoxic effect of L-OHP on colorectal cancer cells. Mol Med Rep 2018;17:51–58.

    CAS  PubMed  Google Scholar 

  41. Sun KX, Xia HW, Xia RL. Anticancer effect of salidroside on colon cancer through inhibiting JAK2/STAT3 signaling pathway. Int J Clin Exp Pathol 2015;8:615–621.

    PubMed  PubMed Central  Google Scholar 

  42. Fan XJ, Wang Y, Wang L, et al. Salidroside induces apoptosis and autophagy in human colorectal cancer cells through inhibition of PI3K/Akt/mTOR pathway. Oncol Rep 2016;36:3559–3567.

    CAS  PubMed  Google Scholar 

  43. Li H, Chen C. Inhibition of autophagy enhances synergistic effects of salidroside and anti-tumor agents against colorectal cancer. BMC Complem Altern M 2017;17:538.

    Google Scholar 

  44. Han SW, Roman J. Targeting apoptotic signaling pathways in human lung cancer. Curr Cancer Drug Targets 2010;10:566–574.

    CAS  PubMed  Google Scholar 

  45. Wang J, Li JZ, Lu AX, et al. Anticancer effect of salidroside on A549 lung cancer cells through inhibition of oxidative stress and phospho-p38 expression. Oncol Lett 2014;7:1159–1164.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ren M, Xu WJ, et al. Salidroside represses proliferation, migration and invasion of human lung cancer cells through AKT and MEK/ERK signal pathway. Artif Cell Nanomed Biotech 2019;47:1014–1021.

    CAS  Google Scholar 

  47. Li B, Qu DH, Wang ZG, et al. Salidroside decrease expression of hypoxia-inducible factor-1α in cultured human lung cancer cells. Afr J Pharm Pharmacol 2012;6:2526–2530.

    CAS  Google Scholar 

  48. Zhang M, Zhao YL, Sun FY. Inhibitory effect of sachalin rhodiola rhizome extract on CD4+ CD25+ regulatory T cells in xenograft tumors of Lewis lung cancer bearing mice. Chin J Cancer Biother 2013;20:444–448.

    Google Scholar 

  49. Ming FX, Jin CL, Zhao SP, et al. Effect of salidroside on inhibiting A549 lung cancer cell proliferation through down-regulating ERK1/2 signaling pathways. Tradit Chin Drug Res Clin Pharmacol (Chin) 2016;27:225–230.

    CAS  Google Scholar 

  50. Lu LL, Liu SS, Dong QJ, et al. Salidroside suppresses the metastasis of hepatocellular carcinoma cells by inhibiting the activation of the Notch1 signaling pathway. Mol Med Rep 2019;19:4964–4972.

    CAS  PubMed  Google Scholar 

  51. Lv HM, Zhang QJ. Expression of salidroside on MMP-1 expression in human hepatoma HepG-2 cells and adhesion effect. Acta Chin Med Pharmacol (Chin) 2015;43:65–66.

    Google Scholar 

  52. Song HJ, Wang JJ, Wang M, et al. Antitumor effect of salidroside on mice bearing HepA hepatocellular carcinoma. Lat Am J Pharm 2015;34:1961–1967.

    Google Scholar 

  53. Song HJ, Lv SC, Li LJ, et al. Anti-cancer effect of salidroside. Chin J Gerontol (Chin) 2011;31:3991–3992.

    CAS  Google Scholar 

  54. Wang L, Chen X, Du Z, et al. Curcumin suppresses gastric tumor cell growth via ROS-mediated DNA polymerase gamma depletion disrupting cellular bioenergetics. J Exp Clin Cancer Res 2017;36:47.

    PubMed  PubMed Central  Google Scholar 

  55. Hagen P, Hulshof MC, Lanschot JJ, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med 2012;366:2074–2084.

    Google Scholar 

  56. Karimi P, Islami F, Anandasabapathy S, et al. Gastric cancer: descriptive epidemiology, screening, and prevention. Cancer Epidemiol Biomarkers Prev 2014;23:700–713.

    PubMed  PubMed Central  Google Scholar 

  57. Yan W, Li K, Buhe A, et al. Salidroside inhibits the proliferation and migration of gastric carcinoma cells and tumor growth via the activation of ERS-dependent autophagy and apoptosis. Royal Soci Chem 2019;9:25655–25666.

    CAS  Google Scholar 

  58. Qi ZL, Tang T, Sheng LL, et al. Salidroside inhibits the proliferation and migration of gastric cancer cells via suppression of Src. associated signaling pathway activation and heat shock protein 70 expression. Mol Med Report 2018;18:147–156.

    CAS  Google Scholar 

  59. Wei LL, Mo SR. An in vitro study of the anticancer effect of salidroside on human gastric carcinoma SGC-7901 cells. J Shandong Univ (Chin) 2015;53:12–15.

    CAS  Google Scholar 

  60. Wang HY, Wang G, Zhang XY. Salidroside inhibits the proliferation of gastric cancer cell SGC7901 and PKC-α expression. J Qinghai Med Coll (Chin) 2014;35:178–182.

    Google Scholar 

  61. Qin H, Du XY, Han JY, et al. Study of the antitumor activity and immunity enhancement of salidroside in vivo. Sci Tech Eng 2011;11:6811–6814.

    Google Scholar 

  62. Liu MW, Su MX, Zhang W, et al. Rhodiola rosea suppresses thymus T-lymphocyte apoptosis by downregulating tumor necrosis factor-α-induced protein 8-like-2 in septic rats. Int J Mol Med 2015;36:386–398.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Taylor JA, Kuchel GA. Bladder cancer in the elderly: clinical outcomes, basic mechanisms, and future research direction. Nat Clin Pract Urol 2009;6:135–144.

    PubMed  PubMed Central  Google Scholar 

  64. Platt FM, Hurst CD, Taylor CF, et al. Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder cancer. Clin Cancer Res 2009;15:6008–6017.

    CAS  PubMed  Google Scholar 

  65. Hildebrandt MA, Yang H, Hung MC, et al. Genetic variations in the PI3K/PTEN/AKT/mTOR pathway are associated with clinical outcomes in esophageal cancer patients treated with chemoradiotherapy. J Clin Oncol 2009;27:857–871.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu ZB, Li XS, Simoneau AR, et al. Rhodiola rosea extracts and salidroside decrease the growth of bladder cancer cell lines via inhibition of the mTOR pathway and induction of autophagy. Mol Carcinog 2012;51:257–267.

    CAS  PubMed  Google Scholar 

  67. Li T, Xu KW, Liu YF. Anticancer effect of salidroside reduces viability through autophagy/PI3K/Akt and MMP-9 signaling pathways in human bladder cancer cells. Oncol Lett 2018;16:3162–3168.

    PubMed  PubMed Central  Google Scholar 

  68. Ricard D, Idbaih A, Ducray F. Primary brain tumours in adults. Lancet 2012;379:1984–1996.

    PubMed  Google Scholar 

  69. Zhang YS, Yao YY, Wang HJ, et al. Effects of salidroside on glioma formation and growth inhibition together with improvement of tumor microenvironment. Chin J Cancer Res 2013;25:520.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Abdel-Magid AF. Wnt/β-catenin signaling pathway inhibitors: a promising cancer therapy. ACS Med Chem Lett 2014;5:956–957.

    PubMed  PubMed Central  Google Scholar 

  71. Mora MC, Bassa LM, Wong KE, et al. Rhodiola crenulata inhibits Wnt/ β-catenin signaling in glioblastoma. J Surg Res 2015;197:247–255.

    PubMed  Google Scholar 

  72. Sun C, Wang ZH, Zheng QS, et al. Salidroside inhibits migration and invasion of human fibrosarcoma HT1080 cells. Phytomedicine 2012;19:355–363.

    CAS  PubMed  Google Scholar 

  73. Hidaka H, Seki N, Yoshino H, et al. Tumor suppressive microRNA-1285 regulates novel molecular targets: aberrant expression and functional significance in renal cell carcinoma. Oncotarget 2012;3:44–57.

    PubMed  PubMed Central  Google Scholar 

  74. Lv C, Huang Y, Liu ZX, et al. Salidroside reduces renal cell carcinoma proliferation by inhibiting JAK2/STAT3 signaling. Cancer Biomark 2016;17:41–47.

    CAS  PubMed  Google Scholar 

  75. Drexler SK, Bonsignore L, Masin M, et al. Tissue-specific opposing functions of the inflammasome adaptor ASC in the regulation of epithelial skin carcinogenesis. Proc Natl Acad Sci USA 2012;109:18384–18389.

    CAS  PubMed  Google Scholar 

  76. Kang NJ, Jung SK, Lee KW, et al. Myricetin is a potent chemopreventive phytochemical in skin carcinogenesis. Acad Sci 2011;1229:124–132.

    CAS  Google Scholar 

  77. Manoharan S, Selvan MV. Chemopreventive potential of geraniol in 7,12-dimethylbenz(a) anthracene (DMBA) induced skin carcinogenesis in Swiss albino mice. J Environ Biol 2012;33:255–260.

    CAS  PubMed  Google Scholar 

  78. Kong Y, Xu SP. Salidroside prevents skin carcinogenesis induced by DMBA/TPA in a mouse model through suppression of inflammation and promotion of apoptosis. Oncol Rep 2018;39:2513–2526.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Li J, Lin HS, Wang XT, et al. The molecular mechanism of traditional Chinese medicine re-sculpture effect on the process of tumor immunoediting. World Sci Tech 2009;11:747–752.

    CAS  Google Scholar 

  80. Liu MH, Su MX, Zhang W, et al. Rhodiola rosea suppresses thymus T-lymphocyte apoptosis by downregulating tumor necrosis factor-α-induced protein-8-like-2 in septic rats. Int J Mol Sci 2015;36:386–398.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-lian Ju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Aq., Ju, Xl. Advances in Research on Anticancer Properties of Salidroside. Chin. J. Integr. Med. 27, 153–160 (2021). https://doi.org/10.1007/s11655-020-3190-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-020-3190-8

Keywords

Navigation