Skip to main content
Log in

Pulmonoprotective Action of Zataria multiflora Ethanolic Extract on Cyclophosphamide-Induced Oxidative Lung Toxicity in Mice

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To evaluate the protective effect of Zataria multiflora extract, an antioxidative medicinal plant, against cyclophosphamide (CP)-induced oxidative lung damage in mice.

Methods

Mice were intraperitoneally pre-treated with various doses of Zataria multiflora extract (50, 100, 200, and 400 mg/kg) once daily for 7 consecutive days. Animals were then injected with a single 200 mg/kg intraperitoneal dose of CP 1 h after the last administration of O. vulgare. Twenty-four hours later, mice were euthanized, the lungs were immediately removed, and biochemical and histological studies were conducted.

Results

A single dose of CP markedly altered the levels of several biomarkers associated with oxidative stress in lung homogenates. Pretreatment with Zataria multiflora significantly inhibited the elevation of lipid peroxidation level and the depletion in glutathione content, and superoxide dismutase and catalase activities induced by CP in lung. In addition, Zataria multiflora effectively alleviated CP-induced histopathological abnormality and pulmonary damages in mice lung tissues.

Conclusions

The results reveal that Zataria multiflora protects lung tissues from CP-induced toxicity and suggest a role for oxidative stress in the pathogenesis of lung toxicity produced by CP in mice. Because Zataria multiflora has been extensively used as an additive agent and is regarded as safe, it may be used concomitantly as a good supplement for reducing organ toxicity in patients undergoing chemotherapy, besides their consolidated ethnopharmacological uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kehrer JP, Kacew S. Systematically applied chemicals that damage lung tissue. Toxicology 1985;35:251–293.

    CAS  PubMed  Google Scholar 

  2. Bunn PA Jr., Carney DN. Overview of chemotherapy for small cell lung cancer. Semin Oncol 1997;24 (2 Suppl 7): S7-69-S7-74.

    Google Scholar 

  3. Fraiser LH, Kanekal S, Kehrer JP. Cyclophosphamide toxicity. Characterising and avoiding the problem. Drugs 1991;42:781–795.

    CAS  PubMed  Google Scholar 

  4. Smith RD, Kehrer JP. Cooxidation of cyclophosphamide as an alternative pathway for its bioactivation and lung toxicity. Cancer Res 1991;51:542–548.

    CAS  PubMed  Google Scholar 

  5. Das UB, Mallick M, Debnath JM, Ghosh D. Protective effect of ascorbic acid on cyclophosphamide-induced testicular gametogenic and androgenic disorders in male rats. Asian J Androl 2002;4:201–207.

    CAS  PubMed  Google Scholar 

  6. Ghosh D, Das UB, Ghosh S, Mallick M, Debnath J. Testicular gametogenic and steroidogenic activities in cyclophosphamide treated rat: a correlative study with testicular oxidative stress. Drug Chem Toxicol 2002;25:281–292.

    CAS  PubMed  Google Scholar 

  7. Patel JM. Metabolism and pulmonary toxicity of cyclophosphamide. Pharmacol Ther 1990;47:137–146.

    CAS  PubMed  Google Scholar 

  8. Liu F, Li XL, Lin T, et al. The cyclophosphamide metabolite, acrolein, induces cytoskeletal changes and oxidative stress in Sertoli cells. Mol Biol Rep 2012;39:493–500.

    CAS  PubMed  Google Scholar 

  9. Shaw PJ and Bleakley M. Systemic inflammatory response syndrome associated with amifostine. Med Pediatr Oncol 2000;34:309–310.

    CAS  PubMed  Google Scholar 

  10. El-Agamy DS. Nilotinib ameliorates lipopolysaccharideinduced acute lung injury in rats. Toxicol Appl Pharmacol 2011;253:153–160.

    CAS  PubMed  Google Scholar 

  11. Sun Y, Zhang J, Yan Y, Chi M, Chen W, Sun P, et al. The protective effect of C-phycocyanin on paraquat-induced acute lung injury in rats. Environ Toxicol Pharmacol 2011;32:168–174.

    PubMed  Google Scholar 

  12. Bhatia K, Ahmad F, Rashid H, Raisuddin S. Protective effect of S-allylcysteine against cyclophosphamide-induced bladder hemorrhagic cystitis in mice. Food Chem Toxicol 2008;46:3368–3374.

    CAS  PubMed  Google Scholar 

  13. Bhatia K, Kaur M, Atif F, Ali M, Rehman H, Rahman S, et al. Aqueous extract of Trigonella foenum-graecum L. ameliorates additive urotoxicity of buthionine sulfoximine and cyclophosphamide in mice. Food Chem Toxicol 2006;44:1744–1750.

    CAS  PubMed  Google Scholar 

  14. Kara H, Karatas F, Tug T, Canatan H, Karaoglu A. Protective effect of octreotide on intra-tracheal bleomycin-induced oxidative damage in rats. Exp Toxicol Pathol 2010;62:235–241.

    CAS  PubMed  Google Scholar 

  15. Majlessi N, Choopani S, Kamalinejad M, Azizi Z. Amelioration of amyloid beta-induced cognitive deficits by Zataria multiflora Boiss. essential oil in a rat model of Alzheimer's disease. CNS Neurosci Ther 2012;18:295–301.

    PubMed  Google Scholar 

  16. Nakhai LA, Mohammadirad A, Yasa N, Minaie B, Nikfar S, Ghazanfari G, et al. Benefits of Zataria multiflora Boiss in experimental model of mouse inflammatory bowel disease. Evid Based Complement Alternat Med 2007;4:43–50.

    PubMed  Google Scholar 

  17. Saei-Dehkordi SS, Tajik H, Moradi M, Khalighi-Sigaroodi F. Chemical composition of essential oils in Zataria multiflora Boiss. from different parts of Iran and their radical scavenging and antimicrobial activity. Food Chem Toxicol 2010;48:1562–1567.

    CAS  PubMed  Google Scholar 

  18. Hosseinzadeh H, Ramezani M, Salmani G. Antinociceptive, anti-inflammatory and acute toxicity effects of Zataria multiflora Boiss extracts in mice and rats. J Ethnopharmacol 2000;73:379–385.

    CAS  PubMed  Google Scholar 

  19. Mohagheghzadeh A, Shams-Ardakani M, Ghannadi A. Linalol-rich essential oil of Zataria multiflora Boiss. (Lamiaceae). Flavour and Fragrance J 2000;15:119–122.

    CAS  Google Scholar 

  20. Mohagheghzadeh A, Shams-Ardakani M, Ghannadi A. Volatile constituents of callus and flower-bearing tops of Zataria multiflora Boiss. (Lamiaceae). Flavour and Fragrance J 2000;15:373–376.

    CAS  Google Scholar 

  21. Saleem M, Nazli R, Afza N, Sami A, Ali MS. Biological significance of essential oil of Zataria multiflora boiss. Nat Prod Res 2004;18:493–497.

    CAS  PubMed  Google Scholar 

  22. Ruberto G and Baratta MT. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chemistry 2000;69:167–174.

    CAS  Google Scholar 

  23. Hosseinimehr SJ, Ahmadashrafi S, Naghshvar F, Ahmadi A, Ehasnalavi S, Tanha M. Chemoprotective effects of Zataria multiflora against genotoxicity induced by cyclophosphamide in mice bone marrow cells. Integr Cancer Ther 2010;9:219–223.

    PubMed  Google Scholar 

  24. Shahidi F, Kamil J, Jeon Y-J, Kim S-K. Antioxidant role of Chitosan in a cooked cod (gadus morhua) model system. J Food Lipids 2002;9:57–64.

    CAS  Google Scholar 

  25. Chabra A, Shokrzadeh M, Naghshvar F, Salehi F, Ahmadi A. Melatonin ameliorates oxidative stress and reproductive toxicity induced by cyclophosphamide in male mice. Hum Exp Toxicol 2014;33:185–195.

    CAS  PubMed  Google Scholar 

  26. Nabavi SM, Nabavi SF, Eslami S, Moghaddam AH. In vivo protective effects of quercetin against sodium fluorideinduced oxidative stress in the hepatic tissue. Food Chemistry 2012;132:931–935.

    CAS  Google Scholar 

  27. Patel JM. Stimulation of cyclophosphamide-induced pulmonary microsomal lipid peroxidation by oxygen. Toxicology 1987;45:79–91.

    CAS  PubMed  Google Scholar 

  28. Ahmadi A, Hosseinimehr SJ, Naghshvar F, Hajir E, Ghahremani M. Chemoprotective effects of hesperidin against genotoxicity induced by cyclophosphamide in mice bone marrow cells. Arch Pharm Res 2008;31:794–797.

    CAS  PubMed  Google Scholar 

  29. Malik SW, Myers JL, DeRemee RA, Specks U. Lung toxicity associated with cyclophosphamide use. Two distinct patterns. Am J Respir Crit Care Med 1996;154:1851–1856.

    CAS  PubMed  Google Scholar 

  30. Jadhav SJ NS, Kulkarni AD, Madhavi DL. Lipid oxidation in biological and food systems. In: Madhavi DL DS, Salunkhe DK, ed. Food antioxidants: technological, toxicological and health perspectives. New York: Marcel Dekker Inc.; 1996:5–63.

    Google Scholar 

  31. Stankiewicz A, Skrzydlewska E, Makiela M. Effects of amifostine on liver oxidative stress caused by cyclophosphamide administration to rats. Drug Metabol Drug Interact 2002;19:67–82.

    CAS  PubMed  Google Scholar 

  32. Venkatesan N, Chandrakasan G. Modulation of cyclophosphamide-induced early lung injury by curcumin, an anti-inflammatory antioxidant. Mol Cell Biochem 1995;142:79–87.

    CAS  PubMed  Google Scholar 

  33. Pratheeshkumar P, Kuttan G. Ameliorative action of Vernonia cinerea L. on cyclophosphamide-induced immunosuppression and oxidative stress in mice. Inflammopharmacology 2010;18:197–207.

    CAS  PubMed  Google Scholar 

  34. Hosseinimehr SJ, Mahmoudzadeh A, Ahmadi A, Ashrafi SA, Shafaghati N, Hedayati N. The radioprotective effect of Zataria multiflora against genotoxicity induced by gamma irradiation in human blood lymphocytes. Cancer Biother Radiopharm 2011;26:325–329.

    CAS  PubMed  Google Scholar 

  35. Baser KH. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des 2008;14:3106–3119.

    CAS  PubMed  Google Scholar 

  36. Buyukbalci A and El SN. Determination of in vitro antidiabetic effects, antioxidant activities and phenol contents of some herbal teas. Plant Foods Hum Nutr 2008;63:27–33.

    CAS  PubMed  Google Scholar 

  37. Katalinic V, Milos M, Kulisic T, Jukic M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chemistry 2006;94:550–557.

    CAS  Google Scholar 

  38. Wei A, Shibamoto T. Antioxidant/lipoxygenase inhibitory activities and chemical compositions of selected essential oils. J Agric Food Chem 2010;58:7218–7225.

    CAS  PubMed  Google Scholar 

  39. Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 2001;49:5165–5170.

    CAS  PubMed  Google Scholar 

  40. Mohammad Shokrzadeh, Amirhossein Ahmadi, Aroona Chabra, Farshad Naghshvar, Emran Habibi, Fatemeh Salehi, et al. An ethanolic extract of Origanum vulgare attenuates cyclophosphamide-induced pulmonary injury and oxidative lung damage in mice Pharm Biol 2014;52:1229–1236.

    Google Scholar 

  41. Tannehill SP, Mehta MP. Amifostine and radiation therapy: past, present, and future. Semin Oncol 1996;23:69–77.

    CAS  PubMed  Google Scholar 

  42. Gebicki S, Gebicki JM. Formation of peroxides in amino acids and proteins exposed to oxygen free radicals. Biochem J 1993;289:743–749.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Haenen GR, Vermeulen NP, Tai Tin Tsoi JN, Ragetli HM, Timmerman H, Blast A. Activation of the microsomal glutathione-S-transferase and reduction of the glutathione dependent protection against lipid peroxidation by acrolein. Biochem Pharmacol 1988;37:1933–1938.

    CAS  PubMed  Google Scholar 

  44. Suddek GM, Ashry NA, Gameil NM. Thymoquinone attenuates cyclophosphamide-induced pulmonary injury in rats. Inflammopharmacology 2013;21:427–435.

    CAS  PubMed  Google Scholar 

  45. Manda K, Bhatia AL. Prophylactic action of melatonin against cyclophosphamide-induced oxidative stress in mice. Cell Biol Toxicol 2003;19:367–372.

    CAS  PubMed  Google Scholar 

  46. Patel JM, Block ER. Cyclophosphamide-induced depression of the antioxidant defense mechanisms of the lung. Exp Lung Res 1985;8:153–165.

    CAS  PubMed  Google Scholar 

  47. Sulkowska MA, Skrzydlewska EL, Sobaniec-Lotowska M, Famulski WA, Terlikowski SL, Kanczuga-Koda L, et al. Effect of cyclophosphamide-induced generation reactive oxygen forms on ultrastructure of the liver and lung. BULLETINVETERINARY INSTITUTE IN PULAWY 2002;46:239–246.

    Google Scholar 

  48. Selvakumar E, Prahalathan C, Mythili Y, Varalakshmi P. Mitigation of oxidative stress in cyclophosphamidechallenged hepatic tissue by DL-a-lipoic acid. Molecular and cellular biochemistry 2005;272:179–185.

    CAS  PubMed  Google Scholar 

  49. Shokrzadeh M, Chabra A, Ahmadi A, Naghshvar F, Habibi E, Salehi F, et al. Hepatoprotective effects of Zataria multiflora ethanolic extract on liver toxicity induced by cyclophosphamide in mice. Drug Res (Stuttg) 2015;65:169–175.

    CAS  Google Scholar 

  50. Gould VE, Miller J. Sclerosing alveolitis induced by cyclophosphamide. Ultrastructural observations on alveolar injury and repair. Am J Pathol 1975;81:513–530.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Ahmadi.

Additional information

Supported by the Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran (No. 92.60-92.90)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibi, E., Shokrzadeh, M., Ahmadi, A. et al. Pulmonoprotective Action of Zataria multiflora Ethanolic Extract on Cyclophosphamide-Induced Oxidative Lung Toxicity in Mice. Chin. J. Integr. Med. 26, 754–761 (2020). https://doi.org/10.1007/s11655-018-2984-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-018-2984-4

Keywords

Navigation