Skip to main content
Log in

Effect of Poria cocos hydroethanolic extract on treating adriamycin-induced rat model of nephrotic syndrome

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To evaluate the effect of Poria cocos (Schw.) Wolf hydroethanolic extract (PHE) against nephrotic syndrome (NS) in rats and to identify the potential active components from PHE.

Methods

The high content compounds were isolated and purified by using column chromatography followed by preparative highperformance liquid chromatography (p-HPLC). Forty male Wistar rats with adriamycin (ADR)-induced NS were randomly divided into 5 groups, 8 in each group: model control group, positive control group (with prednisone treatment), PHE low-dose group, PHE middle-dose group and PHE high-dose group. Another 8 rats were recruited as vehicle control group. All rats received the intragastric administration of corresponding drugs or saline for 30 days. During the experimental period, rats' behavior and appearance were observed and recorded daily, and their body weights were recorded weekly. After treatment, 24-h urine samples were collected to evaluate the urine protein and urine creatinine (Ucr); then the rats were sacrificed to collect carotid blood and to determine the levels of serum total protein (TP), albumin (Alb), globulin (Glo), total cholesterol (TC) and cytokine interlukin-4 (IL-4).

Results

Six acidic components were isolated and identified from the PHE section: pachymic acid, 15α-hydroxydehydrotumulosic acid, trametenolic acid, dehydropachymic acid, 3β-hydroxy-lanosta-7,9(11), 24-trien-21-oic-acid and dehydroeburicoic acid. Compared with the model control group, the urine protein content were significantly decreased in the PHE treatment groups and positive control group (P<0.05), especially PHE middle-dose group (P<0.01). The Ucr values and serum levels of TP, Glo, TC and IL-4 in PHE low- and middle-dose groups were also presented obvious recover tendency as compared with the model control group (P<0.05 or P<0.01). However, positive control group and all PHE groups indicated no significant therapeutic effect on raising Alb value, although PHE low- and middle-dose treatment groups showed better outcomes than positive control group (P>0.05).

Conclusions

PHE showed an encouraging therapeutic effect against ADR-induced NS in a rat model. PHE might be a group of effective substances for the treatment of NS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barzilay Z, Paret G. The nephrotic syndrome. New Engl J Med 1998;339:773.

    Article  CAS  PubMed  Google Scholar 

  2. Haas M. The nephrotic syndrome. New Engl J Med 1998;339:772–773.

    Article  CAS  PubMed  Google Scholar 

  3. Haas M, Meehan SM, Karrison TG, Spargo BH. Changing etiologies of unexplained adult nephrotic syndrome: a comparison of renal biopsy findings from 1976–1979 and 1995–1997. Am J Kidney Dis 1997;30:621–631.

    Article  CAS  PubMed  Google Scholar 

  4. Hull RP, Goldsmith DJ. Nephrotic syndrome in adults. BMJ 2008;336:1185–1189.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kuroki A, Akizawa T, Koshikawa S. Drug-induced nephrotic syndrome. Jpn J Clin Med 2007;65 (Suppl 8):563–566.

    Google Scholar 

  6. Orth SR, Ritz E. The nephrotic syndrome. New Engl J Med 1998;338:1202–1211.

    Article  CAS  PubMed  Google Scholar 

  7. Greenbaum LA, Benndorf R, Smoyer WE. Childhood nephrotic syndrome—current and future therapies. Nature Rev Nephrol 2012;8:445–458.

    Article  CAS  Google Scholar 

  8. Goumenos DS, Ahuja M, Davlouros P, El Nahas AM, Brown CB. Prednisolone and azathioprine in membranous nephropathy: a 10-year follow-up study. Clin Nephrol 2006;65:317–323.

    Article  CAS  PubMed  Google Scholar 

  9. van Husen M, Kemper MJ. New therapies in steroidsensitive and steroid-resistant idiopathic nephrotic syndrome. Pediatr Nephrol 2011;26:881–892.

    Article  PubMed  Google Scholar 

  10. Brater DC. Resistance to loop diuretics. Why it happens and what to do about it? Drugs 1985;30:427–443.

    Article  CAS  PubMed  Google Scholar 

  11. Cody RJ. Clinical trials of diuretic therapy in heart failure: research directions and clinical considerations. J Am Coll Cardiol 1993;22:165A-171A.

    Article  Google Scholar 

  12. Hille U, Soergel P, Makowski L, Dork-Bousset T, Hillemanns P. Lymphedema of the breast as a symptom of internal diseases or side effect of mTor inhibitors. Lymphat Res Biol 2012;10:63–73.

    Article  CAS  PubMed  Google Scholar 

  13. Le Roy V, Delmas Y, Verdoux H. Chronic renal complications induced by lithium. Encephale 2009;35:605–610.

    Article  PubMed  Google Scholar 

  14. Murray MD, Brater DC. Renal toxicity of the nonsteroidal anti-inflammatory drugs. Ann Rev Pharmacol Toxicol 1993;33:435–465.

    Article  CAS  Google Scholar 

  15. Schwarz A. New aspects of the treatment of nephrotic syndrome. J Am Soc Nephrol 2001;12 (Suppl 17):S44–S47.

    PubMed  Google Scholar 

  16. Lee SM, Lee YJ, Yoon JJ, Kang DG, Lee HS. Effect of Poria cocos on hypertonic stress-induced water channel expression and apoptosis in renal collecting duct cells. J Ethnopharmacol 2012;141:368–376.

    Article  PubMed  Google Scholar 

  17. Li TH, Hou CC, Chang CL, Yang WC. Anti-hyperglycemic properties of crude extract and triterpenes from Poria cocos. Evid Based Complement Altern Med 2011;2011:128402.

    Google Scholar 

  18. Poon TY, Ong KL, Cheung BM. Review of the effects of the traditional Chinese medicine Rehmannia Six Formula on diabetes mellitus and its complications. J Diabetes 2011;3:184–200.

    Article  PubMed  Google Scholar 

  19. Sato M, Tai T, Nunoura Y, Yajima Y, Kawashima S, Tanaka K. Dehydrotrametenolic acid induces preadipocyte differentiation and sensitizes animal models of noninsulin-dependent diabetes mellitus to insulin. Biol Pharm Bull 2002;25:81–86.

    Article  PubMed  Google Scholar 

  20. Chen YY, Chang HM. Antiproliferative and differentiating effects of polysaccharide fraction from fu-ling (Poria cocos) on human leukemic U937 and HL-60 cells. Food Chem Toxicol 2004;42:759–769.

    Article  CAS  PubMed  Google Scholar 

  21. Esteban CI. Medicinal interest of Poria cocos (Wolfiporia extensa). Rev Iberoam Micol 2009;26:103–107.

    Article  PubMed  Google Scholar 

  22. Gao X, Zheng X, Li Z, Zhou Y, Sun H, Zhang L, et al. Metabonomic study on chronic unpredictable mild stress and intervention effects of Xiaoyaosan in rats using gas chromatography coupled with mass spectrometry. J Ethnopharmacol 2011;137:690–699.

    Article  CAS  PubMed  Google Scholar 

  23. Lee MR, Yun BS, Park SY, Ly SY, Kim SN, Han BH, et al. Anti-amnesic effect of Chong-Myung-Tang on scopolamineinduced memory impairments in mice. J Ethnopharmacol 2010;132:70–74.

    Article  PubMed  Google Scholar 

  24. Liu C, Gao P, Qian J, Yan W. Immunological study on the antitumor effects of fungus polysaccharides compounds. J Hygiene Res (Chin) 2000;29:178–180.

    CAS  Google Scholar 

  25. Chen X, Zhang L, Cheung PC. Immunopotentiation and antitumor activity of carboxymethylated-sulfatedβ- (1→3)-d-glucan from Poria cocos. Int Immunopharmacol 2010;10:398–405.

    Article  CAS  PubMed  Google Scholar 

  26. Rios JL. Chemical constituents and pharmacological properties of Poria cocos. Planta Med 2011;77:681–691.

    Article  CAS  PubMed  Google Scholar 

  27. Yu SJ, Tseng J. Fu-Ling, a Chinese herbal drug, modulates cytokine secretion by human peripheral blood monocytes. Int J Immunopharmacol 1996;18:37–44.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang GW, Liu HY, Xia QM, Li JQ, Lu H, Zhang QH, et al. Anti-rejection effect of ethanol extract of Poria cocos wolf in rats after cardiac allograft implantation. Chin Med J 2004;117:932–935.

    PubMed  Google Scholar 

  29. Zhang M, Chiu LC, Cheung PC, Ooi VE. Growth-inhibitory effects of a beta-glucan from the mycelium of Poria cocos on human breast carcinoma MCF-7 cells: cell-cycle arrest and apoptosis induction. Oncol Reports 2006;15:637–643.

    Google Scholar 

  30. Liu L. The experience of applying Fangji Fuling Decoction for the treatment of nephrotic syndrome. Chin J Ethnomed Ethnopharm (Chin) 2010;22:188.

    Google Scholar 

  31. Ji Z, Huang C, Liang C, Chen B, Chen S, Sun W. Protective effects of blocking renin-angiotensin system on the progression of renal injury in glomerulosclerosis. Cell Mol Immunol 2005;2:150–154.

    CAS  PubMed  Google Scholar 

  32. Korzets Z, Pomeranz A, Golan E, Bernheim J. Pefloxacin in adriamycin induced nephrotic syndrome in the rat. Nephrol Dial Transplant 1997;12:286–288.

    Article  CAS  PubMed  Google Scholar 

  33. Lebrecht D, Setzer B, Rohrbach R, Walker UA. Mitochondrial DNA and its respiratory chain products are defective in doxorubicin nephrosis. Nephrol Dial Transplant 2004;19:329–336.

    Article  CAS  PubMed  Google Scholar 

  34. Kramer A, van den Hoven M, Rops A, Wijnhoven T, van den Heuvel L, Lensen J, et al. Induction of glomerular heparanase expression in rats with adriamycin nephropathy is regulated by reactive oxygen species and the reninangiotensin system. J Am Soc Nephrol 2006;17:2513–2520.

    Article  CAS  PubMed  Google Scholar 

  35. Lin JJ, Yang Y, Gao N, Fan ZQ. Doxorubicin Injection time and dose the influence of nephrotic syndrome model. Chin J Integr Tradit West Nephrol (Chin) 2011;12:676–678.

    Google Scholar 

  36. Zhang Y, Zhang P, Ning HY, Guo YL, Xing GQ, Shen W. Establishment of a rat model of nephrosis induced by single tail vein injection of doxorubicin. Acta Lab Anim Sci Sin (Chin) 2013;21:1–4.

    Google Scholar 

  37. Somlo S, Mundel P. Getting a foothold in nephrotic syndrome. Nat Genet 2000;24:333–335.

    Article  CAS  PubMed  Google Scholar 

  38. Kramer AB, Bos H, van Goor H, Navis GJ. Sodium intake modifies the negative prognostic value of renal damage prior to treatment with ACE inhibitors on proteinuria induced by adriamycin. Nephr Physiol 2006;103:43–52.

    Article  Google Scholar 

  39. Wong CK, Ho CY, Li EK, Lam CW. Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus 2000;9:589–593.

    Article  CAS  PubMed  Google Scholar 

  40. Lu YF, Xie CX, Xu Yh, Chen TH. The effect of warming yang to promote blood circulation-WYRT on the levels of IL-4 and IgE in nephrotic rat induced by adriamycin-induced nephrotic syndrome. Chin J Integr Tradit West Nephrol (Chin) 2003;4:77–78.

    Google Scholar 

  41. Furusu A, Miyazaki M, Koji T, Abe K, Ozono Y, Harada T, et al. Involvement of IL-4 in human glomerulonephritis: an in situ hybridization study of IL-4 mRNA and IL-4 receptor mRNA. J Am Soc Nephrol 1997;8:730–741.

    CAS  PubMed  Google Scholar 

  42. Fan XZ, Li H, Liu WF, Zhao JQ. Change of serum levels of IL-4 and IL-10 in patients with nephrotic syndrome and its clinical significance. Immunol J 2010;26:56–62.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-wen Liu.

Additional information

Supported by the National Natural Science Foundation of China (No. 30970295) and Youth Fund Project of Hubei Provincial Department of Education (No. Q20091606), China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zan, Jf., Shen, Cj., Zhang, Lp. et al. Effect of Poria cocos hydroethanolic extract on treating adriamycin-induced rat model of nephrotic syndrome. Chin. J. Integr. Med. 23, 916–922 (2017). https://doi.org/10.1007/s11655-016-2643-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-016-2643-6

Keywords

Navigation