Skip to main content
Log in

Panax notoginseng saponins protect kidney from diabetes by up-regulating silent information regulator 1 and activating antioxidant proteins in rats

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To explore the mechanism of the protective effects of Panax notoginseng saponins (PNS) on kidney in diabetic rats.

Methods

Diabetic rat model was obtained by intravenous injection of alloxan, and the rats were divided into model, PNS-100 mg/(kg day) and PNS-200 mg/(kg day) groups, 10 each. Another 10 rats injected with saline were served as control. Periodic acid-Schiff staining and immunological histological chemistry were used to observe histomorphology and tissue expression of bone morphogenetic protein-7 (BMP-7). Silent information regulator 1 (SIRT1) was silenced in rat mesangial cells by RNA interference. The mRNA expressions of SIRT-1, monocyte chemoattractant protein-1 (MCP-1), transforming growth factor β1 (TGF-β1) and plasminogen activator inhibitor-1 (PAI-1) were analyzed by reverse transcription polymerase chain reaction. The protein expressions of SIRT1 and the acetylation of nuclear factor κB (NF-κB) P65 were determined by western blotting. The concentration of MCP-1, TGF-β1 and malondialdehyde (MDA) in culture supernatant were detected by enzyme-linked immuno sorbent assay. The activity of superoxide dismutase (SOD) was detected by the classical method of nitrogen and blue four.

Results

In diabetic model rats, PNS could not only reduce blood glucose and lipid (P<0.01), but also increase protein level of BMP-7 and inhibit PAI-1 expression for suppressing fibrosis of the kidney. In rat mesangial cells, PNS could up-regulate the expression of SIRT1 (P<0.01) and in turn suppress the transcription of TGF-β1 (P<0.05) and MCP-1 (P<0.05). PNS could also reverse the increased acetylation of NF-κB p65 by high glucose. In addition, redox regulation factor MDA was down-regulated (P<0.05) and SOD was up-regulated (P<0.01), which were both induced by SIRT1 up-regulation.

Conclusions

PNS could protect kidney from diabetes with the possible mechanism of up-regulating SIRT1, therefore inhibiting inflammation through decreasing the induction of inflammatory cytokines and TGF-β1, as well as activating antioxidant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shang Q, Xu H, Liu Z, Chen K, Liu J. Oral Panax notoginseng preparation for coronary heart disease: a systematic review of randomized controlled trials. Evid Based Complement Alternat Med 2013;2013:940125.

    PubMed  PubMed Central  Google Scholar 

  2. Zhang Y, Han LF, Sakah KJ, Wu ZZ, Liu LL, Agyemang K, et al. Bioactive protopanaxatriol type saponins isolated from the roots of Panax notoginseng (Burk.) F. H. Chen. Molecules 2013;18:10352–10366.

    Article  CAS  PubMed  Google Scholar 

  3. Ng TB. Pharmacological activity of Sanchi ginseng (Panax notoginseng). J Pharm Pharmacol 2006;58:1007–1019.

    Article  CAS  PubMed  Google Scholar 

  4. Uzayisenga R, Ayeka PA, Wang Y, Anti-diabetic potential of Panax notoginseng saponins (PNS): a review. Phytother Res 2014;28:510–516.

    Article  PubMed  Google Scholar 

  5. Tavafi M. Diabetic nephropathy and antioxidants. J Nephropathol 2013;2:20–27.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gosmanov AR, Wall BM, Gosmanova EO. Diagnosis and treatment of diabetic kidney disease. Am J Med Sci 2014;347:406–413.

    Article  PubMed  Google Scholar 

  7. Tu Q, Qin J, Dong H, Lu F, Guan W. Effects of Panax notoginoside on the expression of TGF-beta1 and Smad-7 in renal tissues of diabetic rats. J Huazhong Univ Sci Technol Med Sci (Chin) 2011;31:190–193.

    Article  Google Scholar 

  8. Lang J, Cao H, Wei A. Comparative study on effect of Panax notoginseng and ticlid in treating early diabetic nephropathy. Chin J Integr Tradit West Med (Chin) 1998;18:727–729.

    CAS  Google Scholar 

  9. Garud MS, Kulkarni YA. Hyperglycemia to nephropathy via transforming growth factor beta. Curr Diabetes Rev 2014;10:182–189.

    Article  CAS  PubMed  Google Scholar 

  10. Ahad A, Ganai AA, Mujeeb M, Siddiqui WA. Ellagic acid, an NF-kappaB inhibitor, ameliorates renal function in experimental diabetic nephropathy. Chem Biol Interact 2014;219:64–75.

    Article  CAS  PubMed  Google Scholar 

  11. Lan HY. Transforming growth factor-beta/Smad signalling in diabetic nephropathy. Clin Exp Pharmacol Physiol 2012;39:731–738.

    Article  CAS  PubMed  Google Scholar 

  12. Nakamura T, Miller D, Ruoslahti E, Border WA. Production of extracellular matrix by glomerular epithelial cells is regulated by transforming growth factor-beta 1. Kidney Int 1992;41:1213–1221.

    Article  CAS  PubMed  Google Scholar 

  13. Miner JH. Renal basement membrane components. Kidney Int 1999;56:2016–2024.

    Article  CAS  PubMed  Google Scholar 

  14. Patek CE, Fleming S, Miles CG, Bellamy CO, Ladomery M, Spraggon L, et al. Murine denys-drash syndrome: evidence of podocyte de-differentiation and systemic mediation of glomerulosclerosis. Hum Mol Genet 2003;12:2379–2394.

    Article  CAS  PubMed  Google Scholar 

  15. Lee HS. Pathogenic role of TGF-beta in the progression of podocyte diseases. Histol Histopathol 2011;26:107–116.

    PubMed  Google Scholar 

  16. Mitu G, Hirschberg R. Bone morphogenetic protein-7 (BMP7) in chronic kidney disease. Front Biosci 2008;13:4726–4739.

    Article  CAS  PubMed  Google Scholar 

  17. Meng XM, Chung AC, Lan HY. Role of the TGF-beta/BMP-7/Smad pathways in renal diseases. Clin Sci (Lond) 2013;124:243–254.

    Article  CAS  Google Scholar 

  18. Malgorzewicz S, Skrzypczak-Jankun E, Jankun J. Plasminogen activator inhibitor-1 in kidney pathology (review). Int J Mol Med 2013;31:503–510.

    CAS  PubMed  Google Scholar 

  19. Li T, Surendran K, Zawaideh MA, Mathew S, Hruska KA. Bone morphogenetic protein 7: a novel treatment for chronic renal and bone disease. Curr Opin Nephrol Hypertens 2004;13:417–422.

    Article  CAS  PubMed  Google Scholar 

  20. Wang P, Du B, Yin W, Wang X, Zhu W. Resveratrol attenuates CoCl2-induced cochlear hair cell damage through upregulation of Sirtuin1 and NF-kappaB deacetylation. PLoS One 2013;8:e80854.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Michan S, Juan AM, Hurst CG, Cui Z, Evans LP, Hatton CJ, et al. Sirtuin1 over-expression does not impact retinal vascular and neuronal degeneration in a mouse model of oxygen-induced retinopathy. PLoS One 2014;9:e85031.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yang J, Zeng Z, Wu T, Yang Z, Liu B, Lan T. Emodin attenuates high glucose-induced TGF-beta1 and fibronectin expression in mesangial cells through inhibition of NFkappaB pathway. Exp Cell Res 2013;319:3182–3189.

    Article  CAS  PubMed  Google Scholar 

  23. Yi B, Hu X, Zhang H, Huang J, Liu J, Hu J, et al. Nuclear NF-kappaB p65 in peripheral blood mononuclear cells correlates with urinary mcp-1, rantes and the severity of type 2 diabetic nephropathy. PLoS One 2014;9:e99633.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lan HY, Chung AC. TGF-beta/Smad signaling in kidney disease. Semin Nephrol 2012;32:236–243.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang LN, Xie XS, Zuo C, Fan JM. Effect of ginsenoside Rgl on the expression of TNF-alpha and MCP-1 in rats with diabetic nephropathy. J Sichuan Univ (Med Sci ed, Chin) 2009;40:466–471.

    CAS  Google Scholar 

  26. Hou S, Zheng F, Li Y, Gao L, Zhang J. The protective effect of glycyrrhizic acid on renal tubular epithelial cell injury induced by high glucose. Int J Mol Sci 2014;15:15026–15043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim JJ, Xiao H, Tan Y, Wang ZZ, Paul Seale J, Qu X. The effects and mechanism of saponins of Panax notogiseng on glucose metabolism in 3T3-L1 cells. Am J Chin Med 2009;37:1179–1189.

    Article  CAS  PubMed  Google Scholar 

  28. Rong L, Chen Y, He M, Zhou X. Panax notoginseng saponins attenuate acute lung injury induced by intestinal ischemia/reperfusion in rats. Respirology 2009;14:890–898.

    Article  PubMed  Google Scholar 

  29. Du YG, Chai KF, Wang LP. Effect of SIRT1 on high glucoseinduced NF-κB p65 subunit acetylation and MCP-1 expression in rat mesangial cells. Acad J Sec Mil Med Univ 2014;35(7):1–5.

    Article  Google Scholar 

  30. Serdar M, Sertoglu E, Uyanik M, Tapan S, Akin K, Bilgi C, et al. Comparison of 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels using mass spectrometer and urine albumin creatinine ratio as a predictor of development of diabetic nephropathy. Free Radic Res 2012;46:1291–1295.

    Article  CAS  PubMed  Google Scholar 

  31. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1 alpha and SIRT1. Nature 2005;434:113–118.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-fu Chai  (柴可夫).

Additional information

Supported by National Natural Science Foundation of China (No. 81273615) and Zhejiang Provincial Natural Science Fund (No. Y2110849)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Yg., Wang, Lp., Qian, Jw. et al. Panax notoginseng saponins protect kidney from diabetes by up-regulating silent information regulator 1 and activating antioxidant proteins in rats. Chin. J. Integr. Med. 22, 910–917 (2016). https://doi.org/10.1007/s11655-015-2446-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-015-2446-1

Keywords

Navigation