Skip to main content

Advertisement

Log in

Chinese tuina downregulates the elevated levels of tissue plasminogen activator in sciatic nerve injured Sprague-Dawley rats

  • Acupuncture Research
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To elucidate the mechanism of Chinese tuina in treating sciatic nerve crush injury, and to detect the levels of tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1), which is thought to play an important role in nerve regeneration.

Methods

Thirty-two adult male Sprague-Dawley rats were subjected to sciatic nerve crush injury and 16 rats (sham-operated group) went through a sham operation. Control group was given no treatment while tuina group received tuina therapy since day 7 post-surgery. Tuina treatment was performed once a day and lasted for 20 days. The sciatic functional index was examined every 5 days during the treatment session. The rats’ gastrocnemius muscles were evaluated for changes in mass and immunohistochemistry techniques were performed to detect the levels of tPA and PAI-1.

Results

Tuina therapy improved the motor function of sciatic nerve injured rats (P<0.05), however, it did not increase muscle volume (P<0.05). Tuina downregulated the levels of tPA and PAI-1 (P<0.05).

Conclusions

The present study implies that tuina treatment could accelerate rehabilitation of peripheral nerve injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu TY, ed. Anmo tuina xue. 3rd ed. Beijing: Peking Union Medical College Press; 2012:3–4.

  2. Jin HZ. Chinese tuina. 1st ed. Shanghai: Publishing House of Shanghai University of Traditional Chinese Medicine; 2002:1–2.

    Google Scholar 

  3. Kemp SW, Webb AA, Dhaliwal S, Syed S, Walsh SK, Midha R. Dose and duration of nerve growth factor (NGF) administration determine the extent of behavioral recovery following peripheral nerve injury in the rat. Exp Neurol 2011;229:460–470.

    Article  CAS  PubMed  Google Scholar 

  4. Barghash Z, Larsen JO, Al-Bishri A, Kahnberg KE. Degeneration and regeneration of motor and sensory nerves: a stereological study of crush lesions in rat facial and mental nerves. Intern J Oral Maxill Surg 2013;42:1566–1574.

    Article  CAS  Google Scholar 

  5. Gigo-Benato D, Russo TL, Geuna S, Domingues NR, Salvini TF, Parizotto NA. Electrical stimulation impairs early functional recovery and accentuates skeletal muscle atrophy after sciatic nerve crush injury in rats. Muscle Nerve 2010;41:685–693.

    Article  PubMed  Google Scholar 

  6. Martins DF, Mazzardo-Martins L, Gadotti VM, Nascimento FP, Lima DA, Speckhann B, et al. Ankle joint mobilization reduces axonotmesis-induced neuropathic pain and glial activation in the spinal cord and enhances nerve regeneration in rats. Pain 2011;152:2653–2661.

    Article  PubMed  Google Scholar 

  7. Cobianchi S, Casals-Diaz L, Jaramillo J, Navarro X. Differential effects of activity dependent treatments on axonal regeneration and neuropathic pain after peripheral nerve injury. Exp Neurol 2013;240:157–167.

    Article  CAS  PubMed  Google Scholar 

  8. Jeon Y, Kim CE, Jung D, Kwak K, Park S, Lim D. Curcumin could prevent the development of chronic neuropathic pain in rats with peripheral nerve injury. Curr Ther Res 2013;74:1–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Noble J, Munro CA, Prasad VS, Midha R. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma 1998;45:116–122.

    Article  CAS  PubMed  Google Scholar 

  10. Lad SP, Nathan JK, Schubert RD, Boakye M. Trends in median, ulnar, radial, and brachioplexus nerve injuries in the United States. Neurosurgery 2010;66:953–960.

    Article  PubMed  Google Scholar 

  11. Shields RK, Dudley-Javoroski S. Musculoskeletal adaptations in chronic spinal cord injury: effects of longterm soleus electrical stimulation training. Neurorehabil Neural Repair 2007;21:169–179.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Haastert-Talini K, Schmitte R, Korte N, Klode D,Ratzka A, Grothe C. Electrical stimulation accelerates axonal and functional peripheral nerve regeneration across long gaps. J Neurotrauma 2011;28:661–674.

    Article  PubMed  Google Scholar 

  13. Wan LD, Xia R, Ding WL. Electrical stimulation enhanced remyelination of injured sciatic nerves by increasing neurotrophins. Neuroscience 2010;169:1029–1038.

    Article  CAS  PubMed  Google Scholar 

  14. Lu MC, Tsai CC, Chen SC, Tsai FJ, Yao CH, Chen YS. Use of electrical stimulation at different current levels to promote recovery after peripheral nerve injury in rats. J Trauma 2009;67:1066–1072.

    Article  PubMed  Google Scholar 

  15. Asensio-Pinilla E, Udina E, Jaramillo J, Navarro X. Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury. Exp Neurol 2009;219:258–265.

    Article  PubMed  Google Scholar 

  16. Rochkind S, Geuna S, Shainberg A. Chapter 25: phototherapy in peripheral nerve injury: effects on muscle preservation and nerve regeneration. Int Rev Neurobiol 2009;87:445–464.

    Article  PubMed  Google Scholar 

  17. Rochkind S, Leider-Trejo L, Nissan M, Shamir MH, Kharenko O, Alon M. Efficacy of 780-nm laser phototherapy on peripheral nerve regeneration after neurotube reconstruction procedure (double-blind randomized study). Photomed Laser Surg 2007;25:137–143.

    Article  PubMed  Google Scholar 

  18. Câmara CN, Brito MV, Silveira EL, Silva DS, Simões VR, Pontes RW. Histological analysis of low-intensity laser therapy effects in peripheral nerve regeneration in Wistar rats. Acta Cir Bras 2011;26:12–18.

    Article  PubMed  Google Scholar 

  19. Rochkind S. Phototherapy in peripheral nerve regeneration: from basic science to clinical study. Neurosurg Focus 2009;26:E8.

    Article  PubMed  Google Scholar 

  20. Hao J, Zhao C, Cao S, Yang S. Electric acupuncture treatment of peripheral nerve injury. J Tradit Chin Med 1995;15:114–117.

    CAS  PubMed  Google Scholar 

  21. Krystosek A, Seeds NW. Plasminogen activator release at the neuronal growth cone. Science 1981;213:1532–1534.

    Article  CAS  PubMed  Google Scholar 

  22. Akassoglou K, Kombrinck KW, Degen JL, Srickland S. Tissue plasminogen activator-mediated fibrinolysis protects against axonal degeneration and demyelination after sciatic nerve injury. J Cell Biol 2000;149:1157–1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Siconolfi LB, Seeds NW. Mice lacking tPA, uPA, or plasminogen genes showed delayed functional recovery after sciatic nerve crush. J Neurosci 2001;21:4348–4355.

    CAS  PubMed  Google Scholar 

  24. O’Rourke J, Jiang X, Hao ZF, Cone RE, Hand AR. Distribution of sympathetic tissue plasminogen activator (tPA) to a distant microvasculature. J Neurosci Res 2005;79:727–733.

    Article  PubMed  Google Scholar 

  25. Kim LR, Whelpdale K, Zurowski M, Pomeranz B. Sympathetic denervation impairs epidermal healing in cutaneous wounds. Wound Repair Regen 1998;6:194–201.

    Article  CAS  PubMed  Google Scholar 

  26. Li WY, Chong SS, Huang EY, Tuan TL. Plasminogen activator/plasmin system: a major player in wound healing? Wound Repair Regen 2003;11:239–247.

    Article  PubMed  Google Scholar 

  27. Cao C, Lawrence DA, Li Y, von Arnim CA, Herz J, Su EJ, et al. Endocytic receptor LRP together with tPA and PAI-1 coordinates Mac-1-dependent macrophage migration. EMBO J 2006;25:1860–1870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Soeda S, Koyanagi S, Kuramoto Y, Kimura M, Oda M, Kozako T, et al. Anti-apoptotic roles of plasminogen activator inhibitor-1 as a neurotrophic factor in the central nervous system. Thromb Haemost 2008;100:1014–1020.

    CAS  PubMed  Google Scholar 

  29. Bain JR, Mackinnon SE, Hunter DA. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg 1989;83:129–138.

    Article  CAS  PubMed  Google Scholar 

  30. Funakoshi H, Risling M, Carlstedt T, Lendahl U, Timmusk T, Metsis M, et al. Targeted expression of a multifunctional chimeric neurotrophin in the lesioned sciatic nerve accelerates regeneration of sensory and motor axons. Proc Natl Acad Sci U S A 1998;95:5269–5274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu Q, Luo ZY. Experimental observation of influence of manual manipulations in Chinese massage to temperature of body surface. Shanghai J Tradit Chin Med (Chin) 1999;9:44–45.

    Google Scholar 

  32. Li J, Wei DM, Wen X, Xie WJ. Effect of massage manipulation on blood rheology and microcirculation of adjuvantinduced arthritis of rabbit. Acta Chin Med Pharmacol (Chin) 2010;38:37–39.

    Google Scholar 

  33. J. Chen, J Li. Effects of massotherapy on hemorheology, NO, ET in the patients with cervical spondylotic vertebral arteriopathy. Lishizhen Med Mater Med Res (Chin) 2008;19:2028–2029.

    CAS  Google Scholar 

  34. Li ZY, Chen PQ, Yan JT, Liu X, Chen XY, Wu GC. Analgesic effect of tender point kneading on neuralgia in rats. Shanghai J Tradit Chin Med (Chin) 2004;38(5):54–56.

    Google Scholar 

  35. Ji B, Jin HZ, Zhang SN, Shao MX. Effect of four-finger maßsage on β-endorphine and p-substance in patients with protrusion of lumbar intervertebral disc. J Nanjing Tradit Chin Med Univ (Chin) 2007;23:322–324.

    CAS  Google Scholar 

  36. Mei XH, Ji Q, Wu JC, Pan F, Wang L, Yu TY. Influences of tuina therapy on nerve growth factor and TrkA receptor of NGF in rats with sciatic nerve injury. J Beijing Univ Tradit Chin Med (Chin) 2013;36:497–500.

    CAS  Google Scholar 

  37. Mei XH, Ji Q, Yao BB, Wu JC, LU MQ, Yu TY. Investigation of tuina therapy on NGF and p75NTR of sciatic nerve injury model rats. China J Tradit Chin Med Pharm (Chin) 2013;28:1994–1997.

    CAS  Google Scholar 

  38. Yao BB, Mei XH, Wu JC. Study on the influence of massage to sciatic nerve injured rats axoplasmic transport function based on motor protein. J Nanjing Univ Tradit Chin Med (Chin) 2013;27:338–341.

    Google Scholar 

  39. Ma J, Liu J, Yu H, Wang Q, Chen Y, Xiang L. Curcumin promotes nerve regeneration and functional recovery in rat model of nerve crush injury. Neurosci Lett 2013;547:26–31.

    Article  CAS  PubMed  Google Scholar 

  40. Marcolino AM, Barbosa RI, das Neves LM, Mazzer N, de Jesus Guirro RR, de Cássia Registro Fonseca M. Assessment of functional recovery of sciatic nerve in rats submitted to low-level laser therapy with different fluences. An experimental study: laser in functional recovery in rats. J Hand Microsurg 2013;5:49–53.

    Article  PubMed  PubMed Central  Google Scholar 

  41. De Medinaceli L, Freed WJ, Wyatt RJ. An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol 1982;77:634–643.

    Article  PubMed  Google Scholar 

  42. Varejão AS, Meek MF, Ferreira AJ, Patrício JA, Cabrita AM. Functional evaluation of peripheral nerve regeneration in the rat: walking track analysis. J Neurosci Methods 2001;108:1–9.

    Article  PubMed  Google Scholar 

  43. Zou T, Ling CC, Xiao Y. Exogenous tissue plasminogen activator enhances peripheral nerve regeneration and functional recovery after injury in mice. J Neuropathol Exp Neurol 2006;65:78–86.

    Article  CAS  PubMed  Google Scholar 

  44. Siconolfi LB, Seeds NW. Induction of the plasminogen activator system accompanies peripheral nerve regeneration after sciatic nerve crush. J Neurosci 2001;21:4336–4347.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors wish to thank YU Yue (The People’s Hospital of Ji County, Tianjin) for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-yuan Yu.

Additional information

Supported by the National Natural Science Foundation of China (No. 81373759), Research Fund for the Doctoral Program of Higher Education (No. 20130013110016), Natural Science Foundation of Beijing (No. 7142097)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, F., Yu, Ty., Wong, S. et al. Chinese tuina downregulates the elevated levels of tissue plasminogen activator in sciatic nerve injured Sprague-Dawley rats. Chin. J. Integr. Med. 23, 617–624 (2017). https://doi.org/10.1007/s11655-015-2142-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-015-2142-1

Keywords

Navigation