Skip to main content

Advertisement

Log in

Magnetic resonance imaging of Alzheimer’s disease: from diagnosis to therapeutic evaluation

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a devastating late-life dementia that produces progressive loss of memory and mental faculties in elderly people. It is important to identify the earliest evidence of AD and to monitor the development of this disease for us to make positive response to its management. Magnetic resonance imaging (MRI) is powerful to image the tissue or organ without damnification. MRI can be employed to diagnose the early AD development and monitor the key biomarker development in AD. MRI may be helpful not only in diagnosing early AD, but also in evaluating its development. This article reviews the progress of MRI on the diagnosis and detection of AD, and makes comments on its therapeutic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang HH, Jiang ZF. Accumulated amyloid-β peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s Disease. J Alzheimers Dis 2009;16:15–27.

    CAS  PubMed  Google Scholar 

  2. http://www.nia.nih.gov/Alzheimers/Publications/ADProgress2005_2006/Part1/looming.htm.

  3. Razifar P, Engler H, Blomquist G, Ringheim A, Estrada S, Långström B, et al. Principal component analysis with prenormalization improves the signal-to-noise ratio and image quality in positron emission tomography studies of amyloid deposits in Alzheimer’s disease. Phys Med Biol 2009; 54:3595–3612.

    Article  CAS  PubMed  Google Scholar 

  4. Mistur R, Mosconi L, De Santi S, Li Y, Tsui W, de Leon M. Positron emission tomography in Alzheimer’s disease: early prediction and differentiation. Future Neurol 2009;1:23–38.

    Article  Google Scholar 

  5. Langbaum JBS, Chen K, Lee W, Reschke C, Bandy D, Fleisher AS, et al. Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s disease neuroimaging initiative. Neuroimage 2009;45:1107–1116.

    Article  PubMed  Google Scholar 

  6. Fox NC, Cousens S, Scahill R, Harvey RJ, Rossor MN. Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease: power calculations and estimates of sample size to detect treatment effects. Arch Neurol 2000;57:339–344.

    Article  CAS  PubMed  Google Scholar 

  7. Fjell AM, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, et al. Minute effects of sex on the aging brain: a multisample magnetic resonance imaging study of healthy aging and Alzheimer’s Disease. J Neurosci 2009; 29:8774–8783.

    Article  CAS  PubMed  Google Scholar 

  8. Bokde ALW, Karmann M, Teipel SJ, Born C, Lieb M, Reiser MF, et al. Decreased activation along the dorsal visual pathway after a 3-month treatment with galantamine in mild Alzheimer disease: a functional magnetic resonance imaging study. J Clin Psychopharm 2009;29:147–156.

    Article  CAS  Google Scholar 

  9. Lauterbur PC. Image formation by induced local interactions: examples of employing nuclear magnetic resonance. Nature 1973; 242:190–199.

    Article  CAS  Google Scholar 

  10. Filler AG. The history, development, and impact of computed imaging in neurological diagnosis and neurosurgery: CT, MRI, DTI. Nature Precedings 2009; doi:10.1038/npre.2009.3267.5.

  11. Hinshaw DS, Bottomley PA, Holland GN. Radiographic thin-section image of the human wrist by nuclear magnetic resonance. Nature 1977;270:722–723.

    Article  CAS  PubMed  Google Scholar 

  12. Lopez OL, Becker JT, Jungreis CA, Rezek D, Estol C, Boiler F, et al. Computed tomography—but not magnetic resonance imaging—identified periventricular whitematter lesions predict symptomatic cerebrovascular disease in probable Alzheimer’s disease. Arch Neurol 1995;52:659–664.

    CAS  PubMed  Google Scholar 

  13. Connor DM, Benveniste H, Dilmanian FA, Kritzer MF, Miller LM, Zhong Z. Computed tomography of amyloid plaques in a mouse model of Alzheimer’s disease using diffraction enhanced imaging. Neuroimage 2009;46:908–914.

    Article  PubMed  Google Scholar 

  14. Brown M, Semelka R, Nishino TK. MRI: basic principles and applications. 3rd ed. Med Phys 2004;31:170.

    Article  Google Scholar 

  15. Kennedy DN, Makris N, Herbert MR. Basic principles of MRI and morphometry studies of human brain development. Dev Sci 2002;5:268–278.

    Article  Google Scholar 

  16. Brant-Zawadzki M, Norman D. Magnetic resonance imaging of the central nervous system. New York: Raven Press; 1986:25–34.

    Google Scholar 

  17. Lehericy S, Marjanska M, Mesrob L, Sarazin M, Kinkingnehun S. Magnetic resonance imaging of Alzheimer’s disease. Eur Radiol 2007;17:347–362.

    Article  PubMed  Google Scholar 

  18. Balafar MA, Ramli AR, Saripan MI, Mashohor S. Review of brain MRI image segmentation methods. Artif Intell Rev 2010;33:261–274.

    Article  Google Scholar 

  19. Seab JP, Jagust WJ, Wong STS, Roos MS, Reed BR, Budinger TF. Quantitative NMR measurements of hippocampal atrophy in Alzheimer’s disease. Magn Reson Med 1988;8:200–208.

    Article  CAS  PubMed  Google Scholar 

  20. Colliot O, Chételat G, Chupin M, et al. Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. Radiology 2008;248:194–201.

    Article  PubMed  Google Scholar 

  21. Jack Jr CR, Petersen RC, Xu Y, O’brien PC, Smith GE, Ivnik RJ, et al. Rate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease. Neurology 1998;51:993–999.

    PubMed  Google Scholar 

  22. Jack Jr CR, Shiung MM, Gunter JL, O’brien PC, Weigand SD, Knopman DS, et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 2004;62:591–600.

    PubMed  Google Scholar 

  23. Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, et al. Dynamics of gray matter loss in Alzheimer’s disease. J Neurosci 2003;23:994–1005.

    CAS  PubMed  Google Scholar 

  24. Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 1995;16:271–278.

    Article  CAS  PubMed  Google Scholar 

  25. Barba I, Fernandez-Montesinos R, Garcia-Dorado D, Pozo D. Alzheimer’s disease beyond the genomic era: nuclear magnetic resonance (NMR) spectroscopy-based metabolomics. J Cell Mol Med 2008;12:1477–1485.

    Article  CAS  PubMed  Google Scholar 

  26. Mellon EA, Pilkinton DT, Clark CM, Elliott MA, Witschey WR, Borthakur A, et al. Sodium MR imaging detection of mild Alzheimer disease: preliminary study. Am J Neuroradiol 2009;30:978–984.

    Article  CAS  PubMed  Google Scholar 

  27. Soares DP, Law M. Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol 2009;64:12–21.

    Article  CAS  PubMed  Google Scholar 

  28. Brand A, Richter-Landsberg C, Leibfritz D. Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 1993;15:289–298.

    Article  CAS  PubMed  Google Scholar 

  29. Castillo M, Kwock L, Scatliff J, Mukherji SK. Proton MR spectroscopy in neoplastic and non-neoplastic brain disorders. Neuroimage Clin North Am 1998; 6:1–20.

    CAS  Google Scholar 

  30. Miller BL, Moats RA, Shonk T, Ernst T, Woolley S, Ross BD. Alzheimer disease: depiction of increased cerebral myo-inositol with proton MR spectroscopy. Radiology 1993;187:433–437.

    CAS  PubMed  Google Scholar 

  31. Bourgeois BFD. General concepts of medical intractibility. In: Luders HO, ed. Epilepsy surgery. New York: Raven Press; 1992:77–81.

    Google Scholar 

  32. Schmidt R, Ropele S, Ebenbauer N, Windisch M, Stöffler A, Fazekas F. Effects of mentine on brain volume, glucose metabolism and cognition in Alzheimer’s disease patients: a neuroimaging study. Alzheimer’s Dementia 2008;4:(supp), T389–T390.

    Article  Google Scholar 

  33. Benveniste H, Einstein G, Kim KR, Hulette C, Johnson GA. Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. PNAS 1999;96:14079–140

    Article  CAS  PubMed  Google Scholar 

  34. Pettegrew JW, Panchalingam K, Moossy J, Martinez J, Rao G, Boller F. Correlation of phosphorus-31 magnetic resonance spectroscopy and morphologic findings in Alzheimer’s disease. Arch Neurol 1988;45:1093–1096.

    CAS  PubMed  Google Scholar 

  35. Kork F, Holthues J, Hellweg R, Jankowski V, Tepel M, Ohring R, et al. A possible new diagnostic biomarker in early diagnosis of Alzheimer’s disease. Curr Alzheimer Res 2009;6:519–524.

    Article  CAS  PubMed  Google Scholar 

  36. Brys M, Glodzik L, Mosconi L, Switalski R, De Santi S, Pirraglia E, et al. Magnetic resonance imaging improves cerebrospinal fluid biomarkers in the early detection of Alzheimer’s Disease. J Alzheimers Dis 2009;16:351–362.

    CAS  PubMed  Google Scholar 

  37. Burns A, Bernabei R, Bullock R, Cruz Jentoft AJ, Frölich L, Hock C, et al. Safety and efficacy of galantamine (Reminyl) in severe Alzheimer’s disease (the SERAD study): a randomised, placebo-controlled, double-blind trial. Lancet Neurol 2009;8:39–47.

    Article  CAS  PubMed  Google Scholar 

  38. Shi C, Liu J, Wu F, Yew DT. Ginkgo biloba extract in Alzheimer’s disease: from action mechanisms to medical practice. Int J Mol Sci 2010;11:107–123.

    Article  CAS  PubMed  Google Scholar 

  39. Desilets AR, Gickas JJ, Dunican KC. Role of huperzine A in the treatment of Alzheimer’s disease. Ann Pharmacother 2009;43:514–518.

    Article  CAS  PubMed  Google Scholar 

  40. Grundman M, Delaney P. Antioxidant strategies for Alzheimer’s disease. Proc Nutr Soc 2002;61:191–202.

    Article  CAS  PubMed  Google Scholar 

  41. Patel PC, Sarsoza F, Vasilevko V, Pan ML, Tsu W, Constantinescu C, et al. 18F-fluoropropyl curcumin binding to β-amyloid plaques in transgenic mouse model of Alzheimer’s disease. Neuroimage 2008; 41: T115.

    Article  Google Scholar 

  42. Baum L, Lam CWK, Cheung SKK, Kwok T, Victor L, Joshua T, et al. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 2008; 28:110–113.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-mei Gu  (顾雪梅).

Additional information

Supported by Funding Project for Academic Human Resources Development in Instituions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR No. 20090513), Scientific Research Common Program of Beijing Municipal lomission of Education (No. KM 201011417002)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Xm., Jiang, Zf. & Huang, Hc. Magnetic resonance imaging of Alzheimer’s disease: from diagnosis to therapeutic evaluation. Chin. J. Integr. Med. 16, 276–282 (2010). https://doi.org/10.1007/s11655-010-0276-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-010-0276-8

Keywords

Navigation