Skip to main content
Log in

Two local dissimilarity measures for weighted graphs with application to protein interaction networks

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

We extend the Czekanowski-Dice dissimilarity measure, classically used to cluster the vertices of unweighted graphs, to weighted ones. The first proposed formula corresponds to edges weighted by a probability of existence. The second one is adapted to edges weighted by intensity or strength. We show on simulated graphs that the class identification process is improved by computing weighted compared to unweighted edges. Finally, an application to a drosophila protein network illustrates the fact that using these new formulas improves the ’biological accuracy’ of partitioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andjilani M, Droz JP, Benahmed M and Tabone E (2006). Down-regulation of fak and iaps by laminin during cisplatin-induced apoptosis in testicular germ cell tumors. Int J Oncol 28(2): 535–542

    Google Scholar 

  • Bader GD and Hogue CW (2003). An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinf 4: 2

    Article  Google Scholar 

  • Baudot A, Martin O, Mouren P, Chevenet F, Guénoche A, Jacq B and Brun C (2006). Prodistin web site: a tool for the functional classification of proteins from interaction networks. BMC Bioinf 22(2): 248–250

    Google Scholar 

  • Baudot A, Jacq B and Brun C (2004). A scale of functional divergence for yeast duplicated genes revealed from the analysis of the protein–protein interaction network. Genome Biol 5: R76

    Article  Google Scholar 

  • Brandes U, Gaertler M, Wagner D (2003) Experiments on graph clustering algorithms. In: Di Battista G, Zwick U (eds) ESA 2003. LNCS, vol 2832. Springer, Heidelberg, pp 568–579

  • Brun C, Chevenet F, Martin D, Wojcik J, Guénoche A and Jacq B (2003). Functional classification of proteins for the prediction of cellular function from a protein–protein interaction network. Genome Biol 5: R6

    Article  Google Scholar 

  • Brun C, Herrmann C and Guénoche A (2004). Clustering proteins from interaction networks for the prediction of cellular functions. BMC Bioinf 5: 95

    Article  Google Scholar 

  • Charon I, Denoed L, Guénoche A and Hudry O (2006). Maximum transfer distance between partitions. J Classif 23(1): 103–121

    Article  Google Scholar 

  • Chen J, Chua HN, Hsu W, Lee ML, Ng SK, Saito R, Sung WK and Wong L (2006). Increasing confidence of protein–protein interactomes. Genome Inf 17(2): 284–297

    Google Scholar 

  • Chua HN, Sung WK and Wong L (2006). Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 22(13): 1623–1630

    Article  Google Scholar 

  • Day W (1981). The complexity of computing metric distances between partitions. Math Soc Sci 1: 269–287

    Article  MATH  Google Scholar 

  • Dice LR (1945). Measures of the amount of ecologic association between species. Ecology 26(3): 297–302

    Article  Google Scholar 

  • van Dongen S (2000) Graph clustering by flow simulation. Ph.D. Thesis, University of Utrecht

  • Fichet B and Le Calvé G (1984). Structure géometrique des principaux indices de dissimilarité sur signes de présence–absence. Stat Anal Donnés 3: 11–44

    Google Scholar 

  • Formstecher E, Arresta S, Collura V, Hamberger A, Meil A, Trehin A, Reverdy C, Betin V, Maire S, Brun C, Jacq B, Arpin M, Bellaiche Y, Bellusci S, Benaroch P, Bornens M, Chanet R, Chavrier P, Delattre O, Doye V, Fehon R, Faye G, Galli T, Girault JA, Goud B, Johannes L, Junier MP, Mirouse V, Mukherjee A, Papadopoulo D, Perez F, Plessis A, Rosbach M, Ross C, Saule S, Stoppa-Lyonnet D, Vincent A, White M, Legrain P, Wojcik J, Camonis J, Daviet L and Gunzburg J (2005). Protein interaction mapping: a drosophila case study. Genome Res 15: 376–384

    Article  Google Scholar 

  • Gascuel O (1997). BioNJ: an improved version of the nj algorithm based on a simple model of sequence data. Mol Biol Evol 14(7): 685–695

    Google Scholar 

  • Girvan M and Newman MEJ (2002). Community structure in social and biological networks. Proc Natl Acad Sci USA 99(12): 7821–7826

    Article  MATH  MathSciNet  Google Scholar 

  • Guénoche A (2004) Clustering by vertex density in a graph. In: Banks D et al Proceedings of IFCS congress classification, clustering and data mining applications. Springer, Berlin, pp 14–24

  • Guénoche A (2005) Comparing recent methods in graph partitioning. ICGT’05. Electronic notes in discrete mathematics, vol 22, pp 83–89

  • Guénoche A (2008) Comparison of algorithms in graph partitioning. RAIRO (to appear)

  • Kuntz P (1992) Représentation euclidienne d’un graphe abstrait en vue de sa segmentation. Ph.D. Thesis, Ecole des Hautes Etudes en Sciences Sociales, Paris

  • Nemwan MEJ (2006). Modularity and community structure in networks. PNAS 103(23): 8577–8582

    Article  Google Scholar 

  • Pons P and Latapy M (2006). Computing communities in large networks using random walks. J Graph Algorithms Appl 10(2): 191–218

    MathSciNet  Google Scholar 

  • Régnier S (1965) Quelques aspects mathématiques des problèmes de classification automatique. ICC Bull 4, reprint (1983) Math Sci Hum 82:13–29

    Google Scholar 

  • Zhong W and Sternberg PW (2006). Genome-wide prediction of C. elegans genetic interactions. Science 318: 1481–1484

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Guénoche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angelelli, JB., Baudot, A., Brun, C. et al. Two local dissimilarity measures for weighted graphs with application to protein interaction networks. ADAC 2, 3–16 (2008). https://doi.org/10.1007/s11634-008-0018-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-008-0018-3

Keywords

Mathematics Subject Classification (2000)

Navigation