Skip to main content
Log in

Above and below ground organic carbon stocks in a sub-tropical Pinus roxburghii Sargent forest of the Garhwal Himalayas

  • Research Article
  • Published:
Forestry Studies in China

Abstract

Accurate estimates of tree carbon, forest floor carbon and organic carbon in forest soils (SOC) are important in order to determine their contribution to global carbon (C) stocks. However, information about these carbon stocks is lacking. Some studies have investigated regional and continental scale patterns of carbon stocks in forest ecosystems; however, the changes in C storage in different components (vegetation, forest floor and soil) as a function of elevation in forest ecosystems remain poorly understood. In this study, we estimate C stocks of vegetation, forest floor and soils of a Pinus roxburghii Sargent forest in the Garhwal Himalayas along a gradient to quantify changes in carbon stock due to differences in elevation at three sites. The biomass of the vegetation changes drastically with increasing elevation among the three sites. The above-ground biomass (AGB) and below-ground biomass (BGB) were highest at site I (184.46 and 46.386 t·ha−1 respectively) at an elevation of 1300 m followed by site II (173.99 and 44.057 t·ha−1 AGB and BGB respectively) at 1400 m and the lowest AGB and BGB were estimated at site III (161.72 and 41.301 t·ha−1) at 1500 m. The trend for SOC stock was similar to that of biomass. Our results suggest that carbon storage (in both soil and biomass) is negatively correlated with elevation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous. 2004. Indian Council of Forestry Research and Education, Dehradun. Chir pine (Pinus roxburghii). Dehradun, Forest Research Institute. 21p. National Forest Library and Information Centre, FRI Dehradun, India

  • Bala G, Caldeira K, Wickett M, Phillips T J, Lobell D B, Delire C, Mirin A. 2007. Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci USA, 104(16), 6550–6555

    Article  PubMed  CAS  Google Scholar 

  • Bitterlich W. 1984. The relaskop idea slough: Commonwealth Agricultural Bureause, Farnham Royal, England

  • Brown S L, Schrooder P, Kern J S. 1999. Spatial distribution of biomass in forests of the eastern USA. Forest Ecol Manage, 123(1): 81–90

    Article  Google Scholar 

  • Brown S, Lugo A E. 1984. Biomass of Tropical Forests: A New Estimate Based on Forest Volumes. Science, 223: 1290–1293

    Article  PubMed  CAS  Google Scholar 

  • Brown S, Sathaye J, Cannell M, Kauppi P. 1996. Mitigation of carbon emission to the atmosphere by forest management. Commonw. Forest Rev, 75(1): 80–91

    Google Scholar 

  • Brown S. 2002. Measuring carbon in forests: current status and future challenges. Environ Pollut, 116: 363–372

    Article  PubMed  CAS  Google Scholar 

  • Cairns M A, Brown S, Helmer E H, Baumgardner G A. 1997. Root biomass allocation in the world’s upland forests. Oecologia, 111: 1–11

    Article  Google Scholar 

  • Canadell J G, Raupach M R. 2008. Managing forests for climate change mitigation. Science, 320: 1456–1457

    Article  PubMed  CAS  Google Scholar 

  • Champion H G, Seth S K. 1968. Revised survey of Forest Types of India. Manager of Publications, Delhi

    Google Scholar 

  • Dadhwal V K, Pandya N, Vora A B. 1998. ’Carbon Cycle for Indian Forest Ecosystem-A Preliminary Estimate’, Global Change Studies, Scientific Results from ISRO Geosphere-Biosphere Programme, India, ISRO, 411–429

  • Dey S K. 2005. A preliminary estimation of carbon stock sequestrated through rubber (Hevea brasiliensis) plantation in North Eastern regional of India. Ind Forest, 131(11): 1429–1435

    Google Scholar 

  • Eswaran H, Reich P F, Kimble J M, Beinroth F H, Padmanabhan E, Moncharoen P. 2000. Global Carbon Stocks. In: Lal R, Kimble J M, Eswaran H, Stewart B A, eds. Global Climate Change and Pedogenic Carbonates, 15–25

  • FAO. 2005. Global forest resource assessment: progress towards sustainable forest management. In: Food and Agriculture Organisation Forestry Paper, vol. 147. FAO, Rome

    Google Scholar 

  • Gairola S, Rawal R S, Todaria N P. 2008. Forest vegetation patterns along an altitudinal gradient in sub-alpine zone of West Himalaya India. Afr J Plant Sci, 2(6): 42–48

    Google Scholar 

  • Garten C T, Post W M, Hanson P J, Cooper L W. 1999. Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains. Biogeochemistry, 45: 115–145

    Article  Google Scholar 

  • Hairiah K, Sitompul S M, Noordwijk M, Palm C. 2001. Methodology for sampling carbon stocks above and below ground. ASB Lecture Notes 4B. International Centre for Research in Agro forestry. Indonesia, Published in Dec., http://www.icraf.cgiar.org/sea. Accessed 15 Jan, 2012

  • Hardy F G, Syaukani Eggleton P. 2001. The effect of altitude and rainfall on the composition of termites (Isotera) of the Leuser ecosystem (Sumatra, Indonesia). J Trop Eco, 17: 379–393

    Google Scholar 

  • Haripriya G S. 2000. Estimates of biomass in Indian forests. Biom Bioenerg, 19: 245–258

    Article  Google Scholar 

  • Hudson R J M, Gherini S A, Goldstein R A. 1994. Modeling the Global Carbon Cycle: Nitrogen Fertilization of the Terrestrial Biosphere and the “Missing” CO2 Sink. Global Biogeochem Cycles, 8: 307–333

    Article  CAS  Google Scholar 

  • IPCC. 1996. Climate Change 1995 Impacts, Adaptations and Mitigation of Climate: Scientific-Technical Analyses. In: Contribution of II to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK

    Google Scholar 

  • Jackson M L. 1958. Soil chemical Analysis Prentice Hall, Inc., Engle Wood Cliffs, New Jersey, USA

    Google Scholar 

  • Johnson M G, Kern J S. 2002. Quantifying the organic carbon held in forested soils of the United States and Pueto Rico. In: Kimble J M, Heath L S, Birdsey R A, Lal R, eds. The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effects. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Kanjilal U N. 1928. Forest flora of the Chakrata, Dehra Dun and Saharanpur Forest Division, United Provinces, Govt. of India. Central Publications Branch, Calcutta

    Google Scholar 

  • Korner C. 1998. A re-assessment of high elevation of tree line positions and their explanations. Oecologia, 115: 445–459

    Article  Google Scholar 

  • Koul D N, Panwar P. 2008. Prioritizing land-management options for carbon sequestration potential. Curr Sci, 95: 658–663

    Google Scholar 

  • Lemenih M, Itanna F. 2004. Soil carbon stocks and turnovers in various vegetation type and arable lands along an elevation gradient in southern Ethiopia. Geoderma, 123: 177–188

    Article  CAS  Google Scholar 

  • Luyssaert, S, Schulze E D, Borner A, Knohl A, Hessenmoller D, Law B E, Ciais P, Grace P. 2008. Old growth forests as global carbon sinks. Nature, 455: 213–215

    Article  PubMed  CAS  Google Scholar 

  • Malhi Y, Baldocchi D D, Jarvis P G. 1999. The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ, 22: 712–740

    Article  Google Scholar 

  • Melillo J M, Hall D O, Agren, G I. 1996. Executive Summary. In: Breymeyer A I, Hall D O, Melillo J M, Agren G I, eds. Global Changes: Effects on Coniferous Forests & Grasslands, John Willey & Sons Pub, NY.

    Google Scholar 

  • Nabuurs G J, Masera O, Andrasko K, Benitez-Ponce P, Boer R, Dutschke M, Elsiddig E, Ford-Robertson J, Frumhoff P, Karjalainen T, Kurz W A, Matsumoto M, Oyhantcabal W, Ravindranath N H, Sanz Sanchez M J, Zhang X. 2000. Forestry. In: Metz B, Davidson O R, Bosch P R, Dave R, Meyer L A, eds. Climate Change 2007: Mitigation. Contribution of III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York, 541–584

    Google Scholar 

  • Odum E P. 1969. The strategy of ecosystem development. Science, 164: 262–270

    Article  PubMed  CAS  Google Scholar 

  • Pressler M. 1895. Das Gesetz der Stambildung Leipzig, 153

  • Quideau S A, Chadwick Q A, Benesi A, Graham R C, Anderson M A. 2001. A direct link between forest vegetation type and soil organic matter composition. Geoderma, 104: 41–60

    Article  CAS  Google Scholar 

  • Ravindranath N H, Somashekhar B S, Gadgil M. 1997. Carbon flows in Indian forests. Climatic Change, 35: 297–320

    Article  CAS  Google Scholar 

  • Ravindranath N H, Somashekhar B S, Gadgil M. 1997. Carbon Flows in Indian Forests. Climte Change, 35: 297–320

    Article  CAS  Google Scholar 

  • Sah S P, Brumme R. 2003. Altitudinal gradients of natural abundance of stable isotopes of nitrogen and carbon in the needles and soil of a pine forest in Nepal. J For Sci, 49(1): 19–26

    Google Scholar 

  • Sharma C M, Baduni N P, Gairola S, Ghildiyal S K, Suyal S. 2010. Tree diversity and carbon stocks of some major forest types of Garhwal Himalaya, India. Forest Ecol Manag, 260: 2170–2179

    Article  Google Scholar 

  • Sheikh M A, Kumar M, Bussmann R W. 2009. Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya. Carbon Balance and Management. doi:10.1186/1750-0680-4-6

  • Singh J S, Tiwari A K, Saxena A K. 1985. Himalayan forests: A net source of carbon to the atmosphere. Environ Conserv, 12: 67–69

    Article  CAS  Google Scholar 

  • Tandel M B, Kukadia M U, Kulambe B N, Jadeja D B. 2009. Influence of tree cover on physical properties of soil. Ind For, 135(3): 420–424

    Google Scholar 

  • Walkley A, Black I A. 1934. An examination of the Degtiareff method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Sci, 63: 29–38

    Article  Google Scholar 

  • Watson R T. 2000. Land Use, Land-Use Change, and Forestry: A Special Report of the IPCC. Cambridge University Press, Cambridge, 377

    Google Scholar 

  • Woomer P L. 1999. Impact of cultivation of carbon fluxes in woody savannas of southern Africa. Water Air soil Pollut, 70: 403–412

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheikh, M.A., Kumar, S. & Kumar, M. Above and below ground organic carbon stocks in a sub-tropical Pinus roxburghii Sargent forest of the Garhwal Himalayas. For. Stud. China 14, 205–209 (2012). https://doi.org/10.1007/s11632-012-0305-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11632-012-0305-0

Key words

Navigation