Skip to main content
Log in

Temporal and spatial variation of pollen yield in natural populations of Pinus roxburghii

  • Research Article
  • Published:
Forestry Studies in China

Abstract

Male components of the reproduction process in Pinus roxburghii were investigated for their variation in time and space as well as pollination, viz. flowering phenology, pollen production variability and pollen dispersal, for five successive years at two different locations (at the lower and higher elevations). The study reveals that elevation and the hour of the day are the main determinants of anthesis and microsporangium dehiscence, because both are related to temperature and humidity. The receptivity of ovulate cone strobili or female strobili occurred earlier at the lower elevation than at the higher elevation, with a longer receptivity period in the latter case. The phenology of male and female cones varied significantly between years and elevations. The determinations of pollen yield considered various sources of variability, i.e., the number of pollen strobili per branch, strobili per tree, microsporangia per tree and pollen grains per tree. Each of these parameters revealed significant year-to-year and elevation effects. Year-to-year variation in the production of pollen cone and pollen grains with mass production after a three-year period revealed a three-year cycle of masting in pollen production in P. roxburghii. The pollen dispersal decreased quickly with distance from the pollen source. As a consequence, a distance of 600 m was proposed as a minimum to prevent contamination by pollen in the management of seed orchards. The results ultimately suggest that the ample production of pollen grains per tree along with flowering synchrony and long dispersal of pollen grains results in homogeneity in large populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alizoti P G, Kilimis K, Gallios P. 2010. Temporal and spatial variation of flowering among Pinus nigra Arn. clones under changing climatic conditions. Forest Ecol Manage, 259(4): 786–797

    Article  Google Scholar 

  • Allison T D. 1990. Pollen production and plant density affect pollination and seed production in Taxus canadensis. Ecology, 71: 516–522

    Article  Google Scholar 

  • Bateman A J. 1947. Contamination in seed crops. II. Wind pollination. Heredity, 1: 235–246

    Article  Google Scholar 

  • Blush T. 1986. Seasonal and diurnal patterns of pollen flight in a loblolly pine seed orchard. Proceedings of IUFRO (International Union of Forest Research Organizations) Conference. Vienna, Austria, 150–159

  • Burczyk J. 1998. Mating system variation in a Scots pine clonal seed orchard. Silv Genet, 47: 155–158

    Google Scholar 

  • Burczyk J, Chalupka W. 1997. Flowering and cone production variability and its effect on parental balance in a Scots pine clonal seed orchard. Ann Sci Forest, 54: 129–144

    Article  Google Scholar 

  • Burczyk J, Kosiński G, Lewandowski A. 1991. Mating pattern and empty seed formation in relation to crown level of Larix decidua (Mill.) clones. Silva Fenn, 25: 201–205

    Google Scholar 

  • Burczyk J, Lewandowski A, Chalupka W. 2004. Local pollen dispersal and distant gene flow in Norway spruce (Picea abies [L.] Karst.). Forest Ecol Manage, 197: 39–48

    Article  Google Scholar 

  • Cadman A, Dames J, Terblanche A P S. 1994. Airspora concentrations in the Vaal Triangle: Monitoring and potential health effects. 1: Pollen. S Afr J Sci, 90: 607–610

    Google Scholar 

  • Cheliak W M, Dancik B P, Morgan K, Yeh F C H, Strobeck C. 1985. Temporal variation of the mating system in a natural population of Jack pine. Genetics, 109: 569–584

    PubMed  CAS  Google Scholar 

  • Chung M S. 1981. Flowering characteristics of Pinus sylvestris L. with special emphasis on the reproductive adaptation to local temperature factor. Acta Forest Fenn, 169: 1–68

    Google Scholar 

  • Colwell R N. 1951. The use of radioactive isotopes in determining spore distribution patterns. Am J Bot, 38: 511–523

    Article  Google Scholar 

  • Dahms W G, Barrett J W. 1975. Seed production of central Oregon ponderosa and lodgepole pines. Research Paper PNWRP-191, Pacific Northwest Forest, Portland

    Google Scholar 

  • Damialis A, Fotiou C, Halley J M, Vokou D. 2011. Effects of environmental factors on pollen production in anemophilous woody species. Trees, 25: 253–264

    Article  Google Scholar 

  • Deshmukh D K. 1966. Characterization of Chir pine (Pinus roxburghii Sargent) for resin yielding capacities. Indian Forest, 92: 368–390

    Google Scholar 

  • Di-Giovanni F, Kevan P G, Arnold J. 1996. Lower planetary boundary layer profiles of atmospheric conifer pollen above a seed orchard in northern Ontario, Canada. Forest Ecol Manage, 83: 87–97

    Article  Google Scholar 

  • Eis S, Garman E H, Ebell L F. 1965. Relation between cone production and diameter increment of Douglas fir (Pseudotsuga menziesii [Mirb.] Franco), grand fir (Abies grandis [Dougl.] Lindl.), and western white pine (Pinus monticola Dougl.). Can J Bot, 43: 1553–1559

    Article  Google Scholar 

  • El-Ghazaly G, El-Ghazaly P K, Larsson K A, Nilsson S. 1993. Comparison of airborne pollen grains in Huddinge and Stockholm, Sweden. Aerobiologia, 9: 53–67

    Article  Google Scholar 

  • El-Kassaby Y A, Askew G R. 1991. The relation between reproductive phenology and reproductive output in determining the gametic pool profile in a Douglas-fir seed orchard. Forest Sci, 37: 827–835

    Google Scholar 

  • El-Kassaby Y A, Barclay H J. 1992. Cost of reproduction in Douglas-fir. Can J Bot, 70: 1429–1432

    Article  Google Scholar 

  • El-Kassaby Y A, Fashler A M K, Sziklai O. 1984. Reproductive phenology and its impact on genetically improved seed production in a Douglas-fir seed orchard. Silv Genet, 33: 120–125

    Google Scholar 

  • EL-Kassaby Y A, Meagher M D, Parkinson J, Portlock F T. 1987. Allozyme inheritance, heterozygosity and outcrossing rate among Pinus monticola near Ladysmith, British Columbia. Heredity, 58: 173–181

    Article  Google Scholar 

  • El-Kassaby Y A, Ritland K, Fashler A M K, Devitt W J B. 1988. The role of reproductive phenology upon the mating system of a Douglas-fir seed orchard. Silv Genet, 37: 76–82

    Google Scholar 

  • Erdtman G. 1943. An Introduction to Pollen Analysis. Waltham, USA: Chronica Botanica

    Google Scholar 

  • Erickson V J, Adams W T. 1990. Mating system variation among individual ramets in a Douglas-fir seed orchard. Can J Forest Res, 20: 1672–1675

    Article  Google Scholar 

  • Eriksson G, Jonsson A, Lindgren D. 1973. Flowering in a clonal trial of Picea abies Karst. Stud Forest Suec, 110: 5–45

    Google Scholar 

  • Faegri K, van der Pijl L. 1979. The Principles of Pollination Ecology. 3rd edn. Oxford: Pergamon Press, 244

    Google Scholar 

  • Forcella F. 1981. Estimating pinyon cone production in New Mexico and western Oklahoma. J Wildl Manage, 45: 553–557

    Article  Google Scholar 

  • Fowells H A, Schubert G H. 1956. Seed crops of forest trees in the pine region of California. US Department of Agriculture Technical Bulletin No. 1150

  • Gashwiler J S. 1970. Further study of conifer seed survival in a western Oregon clearcut. Ecology, 51: 849–854

    Article  Google Scholar 

  • Green B J, Yli-Panula E, Dettmann M, Rutherford S, Simpson R. 2003. Airborne Pinus pollen in the atmosphere of Brisbane, Australia and relationships with meteorological parameters. Aerobiologia, 19: 47–55

    Article  Google Scholar 

  • Greene D F, Messier C, Asselin H, Fortin M-J. 2002. The effect of light availability and basal area on cone production in Abies balsamea and Picea glauca. Can J Bot, 80: 370–377

    Article  Google Scholar 

  • Hagner S. 1965. Cone crop fluctuations in Scots pine and Norway spruce. Stud Forest Suec, 33: 3–21

    Google Scholar 

  • Herrera C M. 1998. Long-term dynamics of Mediterranean frugivorous birds and fleshy fruits: a 12-year study. Ecol Monogr, 68(4): 511–538

    Google Scholar 

  • Herrera C M, Jordano P, Guitián J, Traveset A. 1998. Annual variability in seed production by woody plants and the masting concept: reassessment of principles and relationship to pollination and seed dispersal. Am Nat, 152: 576–594

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo P J, Galán C, Domínguez E. 1999. Pollen production of the genus Cupressus. Grana, 38: 296–230

    Article  Google Scholar 

  • Hidalgo P J, Galán C, Domínguez E. 2003. Male phenology of three species of Cupressus: correlation with airborne pollen. Trees, 17: 336–344

    Google Scholar 

  • Ho R H. 1984. Seed-cone receptivity and seed production potential in white spruce. Forest Ecol Manage, 9: 161–171

    Article  Google Scholar 

  • Iwasa Y, Satake A. 2004. Mechanisms inducing spatially extended synchrony in mast seeding: the role of pollen coupling and environmental fluctuation. Ecol Res, 19: 13–20

    Article  Google Scholar 

  • Jäger S, Spieksma E Th M, Nolard N. 1991. Fluctuations and trends in airborne concentrations of some abundant pollen types, monitored at Vienna, Leiden, and Brussels. Grana, 30: 309–312

    Article  Google Scholar 

  • Janzen D H. 1971. Seed predation by animals. Annu Rev Ecol Syst, 2: 465–492

    Article  Google Scholar 

  • Janzen D H. 1976. Why bamboos wait so long to flower. Annu Rev Ecol Syst, 7: 347–391

    Article  Google Scholar 

  • Johansen D A. 1940. Plant Microtechnique. New York: Mc Graw-Hill

    Google Scholar 

  • Jordano P. 1993. Geographical ecology and variation of plantseed disperser interactions: southern Spanish junipers and frugivorous thrushes. Vegetatio, 107/108: 85–104

    Google Scholar 

  • Joshi M. 1990. A study on soil and vegetation changes after landslide in Kumaun Himalaya. Proceedings of the Indian National Science Academy, B56: 351–359

    Google Scholar 

  • Khanduri V P. 2011. Annual variation in floral phenology and pollen production in a 25-years old plantation of Tectona grandis. Nordic J Bot. Doi: 10.1111/j.1756-1051.2011.01157. x

  • Khanduri V P, Sharma C M. 2000. Development of groups of male strobili, anthesis and microsporangium dehiscence in Pinus roxburghii. Grana, 39: 169–174

    Article  Google Scholar 

  • Khanduri V P, Sharma C M. 2002a. Pollen productivity variations: pollen-ovule ratio and sexual selection in Pinus roxburghii. Grana, 41: 29–38

    Article  Google Scholar 

  • Khanduri V P, Sharma C M. 2002b. Intraspecific hybridization in Pinus roxburghii Sargent. Curr Sci, 82: 1003–1005

    Google Scholar 

  • Khanduri V P, Sharma C M. 2003. Ecology of microsporangium dehiscence and pollen flow in Himalayan long-needle pine (Pinus roxburghii Sargent). Curr Sci, 85: 1620–1624

    Google Scholar 

  • Khanduri V P, Sharma C M. 2009. Cyclic pollen production in Cedrus deodara. Sex Plant Reprod, 22: 53–61

    Article  PubMed  Google Scholar 

  • Khanduri V P, Sharma C M. 2010. Male and female reproductive phenology and annual production of male cones in two natural populations of Cedrus deodara. Nordic J Bot, 28: 119–127

    Article  Google Scholar 

  • Knapp E E, Goedde M A, Rice K J. 2001. Pollen-limited reproduction in blue oak: implications for wind pollination in fragmented populations. Oecologia, 128: 48–55

    Article  Google Scholar 

  • Kochmer J P, Handel S N. 1986. Constraints and competition in the evolution of flowering phenology. Ecol Monogr, 56: 303–325

    Article  Google Scholar 

  • Koski V. 1970. A study of pollen dispersal as a mechanism of gene flow in conifers. Commun Inst Forest Fenn, 70: 1–78

    Google Scholar 

  • Kraft K J. 1968. Ecology of the cone moth Laspeyresia toreuta in Pinus banksiana stands. Ann Entomol Soc Am, 61: 1462–1465

    Google Scholar 

  • Krouchi F, Derridj A, Lefèvre F. 2004. Year and tree effect on reproductive organisation of Cedrus atlantica in a natural forest. Forest Ecol Manage, 197: 181–189

    Article  Google Scholar 

  • Kumar A, Bhatt V P. 1990. Comparative study of growth of native and exotic pines on a rocky wasteland in Garhwal Himalaya. Int J Ecol Environ Sci, 16: 145–150

    Google Scholar 

  • Lai B S, Funda T, Liewlaksaneeyanawin C, Klápště J, van Niejenhuis A, Cook C, Stoehr M U, Woods J, El-Kassaby Y A. 2010. Pollination dynamics in a Douglas-fir seed orchard as revealed by pedigree reconstruction. Ann For Sci, 67(8): 808

    Article  Google Scholar 

  • LaMontagne J M, Boutin S. 2007. Local-scale synchrony and variability in mast seed production patterns of Picea glauca. J Ecol, 95: 991–1000

    Article  Google Scholar 

  • Ledig F T. 1998. Genetic variation in Pinus. In: Richardson D M, ed. Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press, 251–280

    Google Scholar 

  • Lindgren D, Paule L, Shen X H, Yazdani R, Segerström U, Wallin J E, Lejdebro M L. 1995. Can viable pollen carry Scots pine genes over long distances? Grana, 34: 64–69

    Article  Google Scholar 

  • Linhart Y B, Mitton J B. 1985. Relationships among reproduction, growth rates, and protein heterozygosity in ponderosa pine. Am J Bot, 72: 181–184

    Article  Google Scholar 

  • Mattson W J Jr. 1971. Relationship between cone crop size and cone damage by insects in red pine seed-production areas. Can Entomol, 103: 617–621

    Article  Google Scholar 

  • McIntosh M E. 2002. Flowering phenology and reproductive output in two sister species of Ferocactus (Cactaceae). Plant Ecol, 159: 1–13

    Article  Google Scholar 

  • McLemore B F. 1975. Cone and seed characteristics of fertilized and unfertilized longleaf pines. US Department of Agriculture Forest Service Research Paper SO No. 109, Southern Experimental Station

  • Messaoud Y, Bergeron Y, Asselin H. 2007. Reproductive potential of balsam fir (Abies balsamea), white spruce (Picea glauca), and black spruce (P. mariana) at the ecotone between mixedwood and coniferous forests in the boreal zone of western Quebec. Am J Bot, 94: 746–754

    Article  PubMed  Google Scholar 

  • Miller-Rushing A J, Primack R B. 2008. Global warming and flowering times in Thoreau’s concord: a community perspective. Ecology, 89: 332–341

    Article  PubMed  Google Scholar 

  • Misra N M, Lal P. 1984. An approach to fit site index curves for Pinus roxburghii by nested regression method. Indian Forest, 110: 989–996

    Google Scholar 

  • Mitton J B, Williams C G. 2006. Gene flow in conifers. In: William C G, ed. Landscapes, Genomics and Transgenic Conifers. Dordrecht, The Netherlands: Springer Press, 147–168

    Chapter  Google Scholar 

  • Mooney K A, Linhart Y B, Snyder M A. 2011. Masting in ponderosa pine: comparisons of pollen and seed over space and time. Oecologia, 165(3): 651–661

    Article  PubMed  Google Scholar 

  • Nikkanen T. 2001. Reproductive phenology in a Norway spruce seed orchard. Silva Fenn, 35: 39–53

    Google Scholar 

  • Nilsson S G, Wästljung U. 1987. Seed predation and crosspollination in mast-seeding beech (Fagus sylvatica) patches. Ecology, 68: 260–265

    Article  Google Scholar 

  • Norton D A, Kelly D. 1988. Mast seeding over 33 years by Dacrydium cupressinum Lamb. (rimu) (Podocarpaceae) in New Zealand: the importance of economies of scale. Funct Ecol, 2: 399–408

    Article  Google Scholar 

  • O’Connell L M, Russell J, Ritland K. 2004. Fine-scale estimation of outcrossing in western redcedar with microsatellite assay of bulked DNA. Heredity, 93: 443–449

    Article  PubMed  Google Scholar 

  • O’Reilly C, Parker W H, Barker J E. 1982. Effect of pollination period and strobili number on random mating in a clonal seed orchard of Picea mariana. Silv Genet, 31: 90–94

    Google Scholar 

  • Owens J N, Bennett J, L’Hirondelle S. 2005. Pollination and cone morphology affect cone and seed production in lodgepole pine seed orchards. Can J Forest Res, 35: 383–400

    Article  Google Scholar 

  • Owens J N, Blake M D. 1984. The pollination mechanism of Sitka spruce (Picea sitchensis). Can J Bot, 62(6): 1136–1148

    Article  Google Scholar 

  • Pomeroy K B, Korstian C F. 1949. Further results on loblolly pine seed production and dispersal. J Forest, 47: 968–970

    Google Scholar 

  • Ramírez N. 2002. Reproductive phenology, life-forms, and habitats of the Venezuelan Central Plain. Am J Bot, 89: 836–842

    Article  PubMed  Google Scholar 

  • Rathcke B, Lacey E P. 1985. Phenological patterns of terrestrial plants. Annu Rev Ecol Syst, 16: 179–214

    Article  Google Scholar 

  • Raynor G S, Hayes J V, Ogden E C. 1969. Areas within isopleths of ragweed pollen concentrations from local sources. Arch Environ Health, 19: 92–98

    PubMed  CAS  Google Scholar 

  • Restoux G, Silva D E, Sagnard F, Torre F, Klein E, Fady B. 2008. Life at the margin: the mating system of Mediterranean conifers. Web Ecol, 8: 94–102

    Google Scholar 

  • Roff D A. 2002. Life History Evolution. Sunderland, USA: Sinauer Associates

    Google Scholar 

  • Rogers C A, Levetin E. 1998. Evidence of long-distance transport of mountain cedar pollen into Tulsa, Oklahoma. Int J Biometeorol, 42: 65–72

    Article  Google Scholar 

  • Sanguinetti J, Kitzberger T. 2008. Patterns and mechanisms of masting in the large-seeded southern hemisphere conifer Araucaria araucana. Austral Ecol, 33: 78–87

    Article  Google Scholar 

  • Sarvas R. 1962. Investigations on the flowering and seed crop of Pinus silvestris. Commun Inst Forest Fenn, 53: 1–198

    Google Scholar 

  • Satake A, Iwasa Y. 2000. Pollen coupling of forest trees: forming synchronized and periodic reproduction out of chaos. J Theor Biol, 203: 63–84

    Article  PubMed  CAS  Google Scholar 

  • Schopmeyer C S. 1974. Seeds of woody plants in the United States. Agriculture Handbook No. 450. US Department of Agriculture Forest Services, Washington DC

    Google Scholar 

  • Sharma C M, Khanduri V P. 2007. Pollen-mediated gene flow in Himalayan long needle pine (Pinus roxburghii Sargent). Aerobiologia, 23: 153–158

    Article  Google Scholar 

  • Shaw D V, Allard R W. 1982. Estimation of outcrossing rate in Douglas-fir using isozyme markers. Theor Appl Genet, 62: 113–120

    Article  Google Scholar 

  • Singh S P. 1979. Stand volume tables for Uttar Pradesh chir pine (Pinus roxburghii). Indian Forest, 105: 644–657

    Google Scholar 

  • Smith C C, Hamrick J L, Kramer C L. 1990. The advantage of mast years for wind pollination. Am Nat, 136: 154–166

    Article  Google Scholar 

  • Sokal R R, Rohlf F J. 1995. Biometry. 3rd edn. New York: WH Freeman

    Google Scholar 

  • Streiff R, Ducousso A, Lexer C, Steinkellner H, Gloessl J, Kremer A. 1999. Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus rober L. and Q. petraea (Matt.) Liebl. Mol Ecol, 8: 831–841

    Article  Google Scholar 

  • Tapper P G. 1996. Long-term patterns of mast fruiting in Fraxinus excelsior. Ecology, 77: 2567–2572

    Article  Google Scholar 

  • Teresa Gómez-Casero M T, Hidalgo P J, García-Mozo H, Domínguez E, Galán C. 2004. Pollen biology in four Mediterranean Quercus species. Grana, 43: 22–30

    Article  Google Scholar 

  • Tormo Molina R, Munoz Rodriguez A, Silva Palacios I, Gallardo Lopez F. 1996. Pollen production in anemophilous trees. Grana, 35: 38–46

    Article  Google Scholar 

  • Wang C W, Perry T O, Johnson A G. 1960. Pollen dispersion of slash pine (Pinus elliottii Engelm.) with special reference to seed orchard management. Silv Genet, 6: 78–86

    Google Scholar 

  • Wright J W. 1952. Pollen dispersion of some forest trees. Station Paper NE-46. US Department of Agriculture Forest Service, Northeastern Forest Experiment Station, Upper Darby, USA, 1–42

    Google Scholar 

  • Wright J W. 1953. Pollen dispersion studies: Some practical applications. J Forest, 51(2): 114–118

    Google Scholar 

  • Zasada J C, Foote M J, Deneke F J, Parkerson R H. 1978. Case history of an excellent white spruce cone and seed crop in interior Alaska: cone and seed production, germination, and seedling survival. US Department of Agriculture Forest Service General Technical Report PNW-65. Portland, Oregon

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Prasad Khanduri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanduri, V.P. Temporal and spatial variation of pollen yield in natural populations of Pinus roxburghii . For. Stud. China 14, 20–29 (2012). https://doi.org/10.1007/s11632-012-0107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11632-012-0107-4

Key words

Navigation