Skip to main content
Log in

Wood specific gravity of some tree species in the Garhwal Himalayas, India

  • Short Communication
  • Published:
Forestry Studies in China

Abstract

Estimation of terrestrial biomass depends critically on reliable information about wood specific gravity of forest trees. In recent years, wood specific gravity has become more important when exploring the universality of functional traits of plants and estimating their global carbon stocks. To estimate their specific gravity, wood samples were collected from a total of 34 tree species, 30 from lower elevations and 4 from upper elevations in the Garhwal Himalayas, India. The results show that the average wood specific gravity was 0.631 (ranging between 0.275 ± 0.01 and 0.845 ± 0.03) for the species at lower elevations and 0.727 (ranging between 0.628 ± 0.02 and 0.865 ± 0.02) for the upper elevations. The average wood specific gravity for the upper elevation species was 9.6% greater than that for the species at lower elevations. Aegle marmelos among the lower elevation species and Quercus leucotrichophora among the upper elevation species had the highest wood specific gravity, which were 0.845 ± 0.03 and 0.865 ± 0.02, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Araújo T M, Higuchi N, de Carvalho Júnior J A. 1999. Comparison of formulae for biomass content determination in a tropical rain forest site in the state of Pará, Brazil. Forest Ecol Manage, 117: 43–52

    Article  Google Scholar 

  • Baker T R, Phillips O L, Malhi Y, Almeida S, Arroyo L, DiFiore A, Erwin T, Higuchi N, Killeen T J, Laurance S G, Laurance W F, Lewis S L, Monteagudo A, Neill D A, Vargas P N, Pitman N C A, Silva J N M, Martínez R V. 2004a. Increasing biomass in Amazonian forest plots. Phil Trans R Soc Lond B, 359: 353–365

    Article  Google Scholar 

  • Baker T R, Phillips O L, Malhi Y, Almeida S, Arroyo L, Di-Fiore A, Erwin T, Killeen T J, Laurance S G, Laurance W F, Lewis S L, Lloyd J, Monteagudo A, Neill D A, Patiño S, Pitman N C A, Silva J N M, Martínez R V. 2004b. Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biol, 10: 545–562

    Article  Google Scholar 

  • Baker T R, Phillips O L, Laurance W F, Pitman N C A, Almeida S, Arroyo L, DiFiore A, Erwin T, Higuchi N, Killeen T J, Laurance S G, Nascimento H, Monteagudo A, Neill D A, Silva J N M, Malhi Y, Gonzalez G L, Peacock J, Quesada C A, Lewis S L, Lloyd J. 2009. Do species traits determine patterns of wood production in Amazonian forests? Biogeosciences, 6: 297–307

    Article  CAS  Google Scholar 

  • Brown S, Lugo A E. 1992. Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon. Interciencia, 17: 8–18

    CAS  Google Scholar 

  • Brown S. 1997. Estimating Biomass and Biomass Change of Tropical Forests: A Primer. Food and Agriculture Organization (FAO) Forestry Paper 134. Rome: FAO

    Google Scholar 

  • Brown S L, Schroeder P, Kern J S. 1999. Spatial distribution of biomass in forests of the eastern USA. Forest Ecol Manage, 123: 81–90

    Article  Google Scholar 

  • Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R. 2004. Error propagation and scaling for tropical forest biomass estimates. Phil Trans R Soc Lond B, 359: 409–420

    Article  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns M A, Chambers J Q, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure J P, Nelson B W, Ogawa H, Puig H, Riera B, Yamakura T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145: 87–99

    Article  PubMed  CAS  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis S L, Swenson N G, Zanne A E. 2009. Towards a worldwide wood economics spectrum. Ecol Lett, 12: 351–366

    Article  PubMed  Google Scholar 

  • Chowdhury K A, Ghosh S S. 1958. Indian Woods: Their Identification, Properties and Uses. vol. 1. Delhi, India: Manager of Publications

    Google Scholar 

  • Culmsee H, Leuschner C, Moser G, Pitopang R. 2010. Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. J Biogeogr, 37: 960–974

    Article  Google Scholar 

  • Cummings D L, Kauffman J B, Perry D A, Hughes R F. 2002. Aboveground biomass and structure of rainforests in the southwestern Brazilian Amazon. Forest Ecol Manage, 163: 293–307

    Article  Google Scholar 

  • Fearnside P M. 1997. Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecol Manage, 90: 59–87

    Article  Google Scholar 

  • Ghosh S S, Rao K R, Purkayastha S K. 1963. Indian Woods, Their Identification, Properties and Uses. vol. 2. Delhi, India: Manager of Publications, 13–49

    Google Scholar 

  • Keeling H C, Phillips O L. 2007. The global relationship between forest productivity and biomass. Global Ecol Biogeogr, 16: 618–631

    Article  Google Scholar 

  • Ketterings Q M, Coe R, van Noordwijk M, Ambagau Y, Palm C A. 2001. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecol Manage, 146: 199–209

    Article  Google Scholar 

  • King D A, Davies S J, Tan S, Noor N S M. 2006. The role of wood density and stem support costs in the growth and mortality of tropical trees. J Ecol, 94: 670–680

    Article  Google Scholar 

  • Kumar M, Sharma C M, Rajwar G S. 2009. Energy budget of traditional hill agroecosystem along altitudinal gradient in Garhwal Himalaya, India. World J Agri Sci, 5(6): 729–736

    Google Scholar 

  • Larson P R. 1969. Wood formation and the concept of wood quality. Bulletin No. 74. School of Forestry, Yale University, New Haven

    Google Scholar 

  • Magcale-Macandog D B. 2004. Comparative evaluation of different approaches to estimate aboveground biomass and biomass density of tropical forests in Southeast Asia: a review. Phil Agric Sci, 87: 61–75

    Google Scholar 

  • Malhi Y, Wood D, Baker T R, Wright J, Phillips O L, Cochrane T, Meir P, Chave J, Almeida S, Arroyo L, Higuchis N, Killeen T J, Laurance S G, Laurance W F, Lewiss S L, Monteagudo A, Neill D A, Vargas P N, Pitman N C A, Quesada C A, Salomao R, Silva J N M, Lezama A T, Terborgh J, Martinez R V, Vinceti B. 2006. The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biol, 12: 1107–1138

    Article  Google Scholar 

  • Mani S, Parthasarathy N. 2007. Above-ground biomass estimation in ten tropical dry evergreen forest sites of peninsular India. Biomass Bioenergy, 31: 284–290

    Article  Google Scholar 

  • Muller-Landau H C. 2004. Interspecific and inter-site variation in wood specific gravity of tropical trees. Biotropica, 36(1): 20–32

    Google Scholar 

  • Nascimento H E M, Laurance W F. 2004. Biomass dynamics in Amazonian forest fragments. Ecol Appl, 14: S127–S138

    Article  Google Scholar 

  • Nelson B W, Mesquita R, Pereira J L G, de Souza S G A, Batista G T, Couto L B. 1999. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecol Manage, 117: 149–167

    Article  Google Scholar 

  • Nogueira E M, Nelson B W, Fearnside P M. 2005. Wood density in dense forest in central Amazonia, Brazil. Forest Ecol Manage, 208: 261–286

    Article  Google Scholar 

  • Purkayastha S K. 1982. Indian Woods: Their Identification, Properties and Uses. vol. 4. Delhi, India: The Controller of Publications, 172

    Google Scholar 

  • Rajput S S, Shukla N K, Gupta V K. 1985. Specific gravity of Indian timber. J Timber Dev Assoc India, 31(3): 12–41

    Google Scholar 

  • Raturi R D, Chauhan L, Gupta S, Vijendra R R. 2002. Indian Woods: Their Identification, Properties and Uses. vol. 6. Dehra Dun, India: ICFRE Publication, 199

    Google Scholar 

  • Rigatto A T. 2004. Variation in strength in pine timber. S Afr J Sci, 59: 653–683

    Google Scholar 

  • Slik J W F. 2006. Estimating species-specific wood density from the genus average in Indonesian trees. J Trop Ecol, 22: 481–482

    Article  Google Scholar 

  • Smith D M. 1954. Maximum moisture content method for determining specific gravity of small wood samples. United States Department of Agriculture Forest Service, Forest Products Laboratory Report No. 2014, Madison and Wisconsin

  • Swenson N G, Enquist B J. 2008. The relationship between stem and branch wood specific gravity and the ability of each measure to predict leaf area. Amer J Bot, 95: 516–519

    Article  Google Scholar 

  • van Gelder H A, Poorter L, Sterck F J. 2006. Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytol, 171: 367–378

    Article  PubMed  Google Scholar 

  • Wiemann M C, Williamson G B. 1988. Extreme radial changes in wood specific gravity in some tropical pioneers. Wood Fiber Sci, 20: 344–349

    Google Scholar 

  • Woodcock D W, Shier A D. 2003. Does canopy position affect wood specific gravity in temperate forest trees? Ann Bot, 91: 529–537

    Article  PubMed  CAS  Google Scholar 

  • Zobel B J, Jett J B. 1995. Genetics of Wood Production. Heidelbery/New York: Spinger-Verlag

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheikh, M.A., Kumar, M. & Bhat, J.A. Wood specific gravity of some tree species in the Garhwal Himalayas, India. For. Stud. China 13, 225–230 (2011). https://doi.org/10.1007/s11632-011-0310-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11632-011-0310-8

Key words

Navigation