Skip to main content
Log in

Isolation and characterization of the AGAMOUS homologous gene NTAG in Chinese narcissus (Narcissus tazetta var. chinensis Roem)

  • Published:
Forestry Studies in China

Abstract

Amaryllidaceae, a monocot plant family, consists of many important ornamental bulb flower species. Chinese narcissus (Narcissus tazetta var. chinensis Roem), its flowers developed at high temperatures and bloomed at lower temperatures during the Chinese Spring Festival, is a traditional Chinese flower with high economic and ornamental value. To study its flower development, a full length cDNA containing MADS box domain from narcissus was isolated by a reverse transcription polymerase chain reaction (RT-PCR) with degenerate oligo-nucleotide primers derived from a conserved MADS-and K-box domain sequence. The 5′ and the 3′ regions of the gene were amplified using the PCR protocol for the rapid amplification of cDNA ends (RACE). The 690 bp open reading frame encodes 230 amino acid residues. A comparison of the deduced amino acid sequence of NTAG with the sequence of other MADS box proteins showed 91.3% amino acid identities with HAG (Hyacinthus orientalis). Sequence analysis and alignment showed significant similarity with other AG homologues. RNA blot analysis indicated that the narcissus NTAG gene was expressed only in reproductive organs, especially in stamens and carpels. These results indicated that the NTAG gene was an AG homologue and that the AG genes appeared to be structurally and functionally conserved between dicots and monocots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bowman J L, Smyth D R, Meyerowitz E M. 1991. Genetic interactions between homeotic genes of Arabidopsis. Development, 112: 1–20

    PubMed  CAS  Google Scholar 

  • Coen E S, Meyerowitz E M. 1991. The war of the whorls: genetic interactions controlling flower development. Nature, 353:31–37

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Wang Z, Wang Y, Bao F, Li N, Peng Z, Li J. 2001. Identification of brassinosteroid responsive genes in Arabidopsis by cDNA array. Sci. China Ser. C, 637–643

  • Kang H G, Joen J S, Lee S, An G. 1998. Identification of class B and class C floral organ identity genes from rice plants. Plant Mol. Biol., 38: 1,021–1,029

    Article  CAS  Google Scholar 

  • Kempin S A, Mandel M A, Yanofsky M F. 1993. Conversion of perianth into reproductive organs by ectopic expression of the tabocco floral homeotic gene NAG1. Plant Physiol., 103: 1,041–1,046

    Article  CAS  Google Scholar 

  • Kyozuka J, Shimamoto K. 2002. Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants. Plant Cell Physiol., 43(1): 130–135

    Article  PubMed  CAS  Google Scholar 

  • Li Q Z, Li X G, Bai S N, Lu W L, Zhang X S. 2002. Isolation of HAG1 and its regulation by plant hormones during in vitro floral organogenesis in Hyacinthus orientalis L. Planta, 215(4): 533–540

    Article  PubMed  CAS  Google Scholar 

  • Mandel M A, Bowman J L, Kempin S A, Ma H, Meyerowitz E M, Yanofsky M F. 1992. Manipulation of floral structure in transgenic tobacco. Cell, 71: 133–143

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Lydiate D, Brinkmann H, Forkmann G, Saeddler H, Cerff R. 1993. Molecular phylogenesis in angiosperm evolution. Mol. Biol. Evol., 10: 140–162

    PubMed  CAS  Google Scholar 

  • Mena M, Ambrose B A, Meeley R B, Briggs S P, Yanofsky M F, Schmidt R J. 1996. Diversification of C-function activity in maize flower development. Science, 274: 1,537–1,540

    Article  CAS  Google Scholar 

  • Mizukami Y, Ma H. 1995. Ecotopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell, 71: 119–131

    Article  Google Scholar 

  • Mou Z, Wang X, Fu Z, Dai Y, Han C, Ouyang J, Bao F, Hu Y, and Li J. 2002. Silencing of phosphoethanolamine N-methyltransferase results in temperature-sensitive male sterility and salt hypersensitivity in Arabidopsis. Plant Cell, 14(9): 2,031–2,043

    Article  CAS  Google Scholar 

  • Mou Z, He Y, Dai Y, Liu X, Li J. 2000. Deficiency in fatty acid syntheses leads to premature cell death and dramatic alterations in plant morphology. Plant Cell, 12(3): 405–417

    Article  PubMed  CAS  Google Scholar 

  • Munster T, Pahnke J, Di Rosa A, Kim J T, Martin W, Saedler H, Theissen G. 1997. Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc. Natl. Acad. Sci. USA, 94(6): 2,415–2,420

    Article  CAS  Google Scholar 

  • Ng M, Yanofsky M F. 2000. Three ways to learn the ABCs. Curr. Opin. Plant Biol., 3(1): 47–52

    Article  PubMed  CAS  Google Scholar 

  • Pnueli L, Hareven D, Rounsleay S D, Yanofsky M F. 1994. Isolation of the tomato AGAMOUS gene Tag1 and analysis of its homeotic role in transgenic plants. Plant Cell, 6: 163–173

    Article  PubMed  CAS  Google Scholar 

  • Purugganan M D. 1997. The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and molecular clock estimates. Mol. Evol., 45(4): 392–396

    Article  CAS  Google Scholar 

  • Riechmann J L, Meyerowitz E M. 1997. MADS domain proteins in plant development. Biol. Chem., 378: 1,079–1,101

    CAS  Google Scholar 

  • Rounsley S D, Ditta G S, and Yanofsky M F. 1995. Diverse roles of MADS box genes in Arabidopsis development. Plant Cell, 7: 1,259–1,269

    Article  CAS  Google Scholar 

  • Rutledge R, Regan S, Nicolas O, Fobert P, Cote C, Bosnich W, Kauffeldt C, Sunohara G, Seguin A, Stewart D. 1998. Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Plant J., 15(5): 625–634

    Article  PubMed  CAS  Google Scholar 

  • Tsuchimoto S, Van der Krol A R, Chua N H. 1993. Functional analysis of petunia floral homeotic MADS-box gene pMADS1. Genes Dev., 7: 1,214–1,228

    Google Scholar 

  • Weigel D, Meyerowitz E M. 1994. The ABCs of floral homotic genes. Cell, 78: 203–209

    Article  PubMed  CAS  Google Scholar 

  • Wolfe K H, Gouy M, Yang Y W, Sharp P M, Li W H. 1989. Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc. Natl. Acad. Sci. USA, 86(16): 6,201–6,205

    CAS  Google Scholar 

  • Yanofsky M F, Ma H, Bowman J L, Drews G N, Feldmann K A, Meyerowitz E M. 1990. The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature, 346(5): 35–39

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhen-hua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Zk., Gao, J., Li, Lb. et al. Isolation and characterization of the AGAMOUS homologous gene NTAG in Chinese narcissus (Narcissus tazetta var. chinensis Roem). For. Stud. China 8, 21–26 (2006). https://doi.org/10.1007/s11632-006-0004-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11632-006-0004-9

Key words

Navigation