Skip to main content
Log in

The formation of porphyry copper deposits

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

Copper is a moderately incompatible chalcophile element. Its behavior is strongly controlled by sulfides. The speciation of sulfur is controlled by oxygen fugacity. Therefore, porphyry Cu deposits are usually oxidized (with oxygen fugacities > ΔFMQ +2) (Mungall 2002; Sun et al. 2015). The problem is that while most of the magmas at convergent margins are highly oxidized, porphyry Cu deposits are very rare, suggesting that high oxygen fugacity alone is not sufficient. Partial melting of mantle peridotite even at very high oxygen fugacities forms arc magmas with initial Cu contents too low to form porphyry Cu deposits directly (Lee et al. 2012; Wilkinson 2013). Here we show that partial melting of subducted young oceanic slabs at high oxygen fugacity (>ΔFMQ +2) may form magmas with initial Cu contents up to >500 ppm, favorable for porphyry mineralization. Pre-enrichment of Cu through sulfide saturation and accumulation is not necessarily beneficial to porphyry Cu mineralization. In contrast, re-melting of porphyritic hydrothermal sulfide associated with iron oxides may have major contributions to porphyry deposits. Thick overriding continental crust reduces the “leakage” of hydrothermal fluids, thereby promoting porphyry mineralization. Nevertheless, it is also more difficult for ore forming fluids to penetrate the thick continental crust to reach the depths of 2–4 km where porphyry deposits form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ballard JR, Palin JM, Campbell IH (2002) Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contrib Mineral Petrol 144:347–364. doi:10.1007/s00410-002-0402-5

    Article  Google Scholar 

  • Ballhaus C (1993) Oxidation states of the lithospheric and asthenospheric upper mantle. Contrib Miner Petrol 114:331–348

    Article  Google Scholar 

  • Bryant JA, Yogodzinski GM, Churikova TG (2007) Melt-mantle interactions beneath the Kamchatka arc: evidence from ultramafic xenoliths from Shiveluch volcano. Geochem Geophys Geosyst 8:ISI:000246140400001

  • Chiaradia M (2014) Copper enrichment in arc magmas controlled by overriding plate thickness. Nat Geosci 7:43–46. doi:10.1038/Ngeo2028

    Article  Google Scholar 

  • Chiaradia M, Ulianov A, Kouzmanov K, Beate B (2012) Why large porphyry Cu deposits like high Sr/Y magmas? Sci Rep 2. doi:10.1038/srep00685

  • Cooke DR, Hollings P, Walsh JL (2005) Giant porphyry deposits: characteristics, distribution, and tectonic controls. Econ Geol 100:801–818

    Article  Google Scholar 

  • Jenner FE, O’Neill HSC, Arculus RJ, Mavrogenes JA (2010) The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu. J Petrol 51:2445–2464. doi:10.1093/petrology/egq063

    Article  Google Scholar 

  • Jugo PJ (2009) Sulfur content at sulfide saturation in oxidized magmas. Geology 37:415–418. doi:10.1130/g25527a.1

    Article  Google Scholar 

  • Jugo PJ, Luth RW, Richards JP (2005) Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts. Geochim Cosmochim Acta 69:497–503. doi:10.1016/j.gca.2004.07.011

    Article  Google Scholar 

  • Jugo PJ, Wilke M, Botcharnikov RE (2010) Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: implications for S speciation and S content as function of oxygen fugacity. Geochim Cosmochim Acta 74:5926–5938

    Article  Google Scholar 

  • Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325:605–607

    Article  Google Scholar 

  • Lee CTA (2014) Copper conundrums. Nat Geosci 7:10–11. doi:10.1038/ngeo2039

    Article  Google Scholar 

  • Lee CTA, Luffi P, Le Roux V, Dasgupta R, Albarede F, Leeman WP (2010) The redox state of arc mantle using Zn/Fe systematics. Nature 468:681–685

    Article  Google Scholar 

  • Lee CTA et al (2012) Copper systematics in arc magmas and implications for crust-mantle differentiation. Science 336:64–68. doi:10.1126/science.1217313

    Article  Google Scholar 

  • Lee C-TA, Lee TC, Wu C-T (2014) Modeling the compositional evolution of recharging, evacuating, and fractionating (REFC) magma chambers: Implications for differentiation of arc magmas. Geochim Cosmochim Acta doi:10.1016/j.gca.2013.08.009

  • Mavrogenes JA, O’Neill HSC (1999) The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim Cosmochim Acta 63:1173–1180. doi:10.1016/S0016-7037(98)00289-0

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The Composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Moss R, Scott SD, Binns RA (2001) Gold content of eastern Manus basin volcanic rocks: implications for enrichment in associated hydrothermal precipitates. Econ Geol Bull Soc Econ Geol 96:91–107. doi:10.2113/96.1.91

    Google Scholar 

  • Mungall JE (2002) Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 30:915–918

    Article  Google Scholar 

  • Ni HW, Keppler H (2012) In-situ Raman spectroscopic study of sulfur speciation in oxidized magmatic-hydrothermal fluids. Am Mineral 97:1348–1353

    Article  Google Scholar 

  • Oyarzun R, Marquez A, Lillo J, Lopez I, Rivera S (2001) Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism. Mineralium Deposita 36:794–798

    Article  Google Scholar 

  • Parkinson IJ, Arculus RJ (1999) The redox state of subduction zones: insights from arc-peridotites. Chem Geol 160:409–423

    Article  Google Scholar 

  • Patten C, Barnes SJ, Mathez EA, Jenner FE (2013) Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets. Chem Geol 358:170–188. doi:10.1016/j.chemgeo.2013.08.040

    Article  Google Scholar 

  • Richards JP (2011) High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: just add water. Econ Geol 106:1075–1081

    Article  Google Scholar 

  • Richards JP (2013) Giant ore deposits formed by optimal alignments and combinations of geological processes. Nat Geosci 6:911–916. doi:10.1038/ngeo1920

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Heinrich DH, Turekian KK (eds) Treatise on geochemistry, vol 3. Pergamon, Oxford, pp 1–64

    Chapter  Google Scholar 

  • Sajona FG, Maury RC (1998) Association of adakites with gold and copper mineralization in the Philippines. Comptes Rendus de l’Academie des Sciences-Series IIA-Earth and Planetary Science 326:27–34

    Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Article  Google Scholar 

  • Sun WD, Bennett VC, Eggins SM, Arculus RJ, Perfit MR (2003) Rhenium systematics in submarine MORB and back-arc basin glasses: laser ablation ICP-MS results. Chem Geol 196:259–281

    Article  Google Scholar 

  • Sun WD, Arculus RJ, Kamenetsky VS, Binns RA (2004) Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature 431:975–978. doi:10.1038/Nature02972

    Article  Google Scholar 

  • Sun WD et al (2007a) Chlorine in submarine volcanic glasses from the eastern Manus basin. Geochim Cosmochim Acta 71:1542–1552

    Article  Google Scholar 

  • Sun XM et al (2007b) Monazite, iron oxide and barite exsolutions in apatite aggregates from CCSD drillhole eclogites and their geological implications. Geochim Cosmochim Acta 71:2896–2905

    Article  Google Scholar 

  • Sun WD et al (2011) The genetic association of adakites and Cu-Au ore deposits. Int Geol Rev 53:691–703. doi:10.1080/00206814.2010.507362

    Article  Google Scholar 

  • Sun WD et al (2012) Geochemical constraints on adakites of different origins and copper mineralization. J Geol 120:105–120. doi:10.1086/662736

    Article  Google Scholar 

  • Sun WD et al (2013) The link between reduced porphyry copper deposits and oxidized magmas. Geochim Cosmochim Acta 103:263–275. doi:10.1016/j.gca.2012.10.054

    Article  Google Scholar 

  • Sun WD et al (2015) Porphyry deposits and oxidized magmas. Ore Geol Rev 65:97–131

    Article  Google Scholar 

  • Thieblemont D, Stein G, Lescuyer JL (1997) Epithermal and porphyry deposits: the adakite connection Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule a-Sciences De La Terre Et Des Planetes 325:103–109

  • Wilkinson JJ (2013) Triggers for the formation of porphyry ore deposits in magmatic arcs. Nat Geosci 6:917–925. doi:10.1038/Ngeo1940

    Article  Google Scholar 

  • Zhang H et al (2013) High oxygen fugacity and slab melting linked to Cu mineralization: evidence from Dexing Porphyry copper deposits, Southeastern China. J Geol 121:289–305. doi:10.1086/669975

    Article  Google Scholar 

Download references

Acknowledgements

This is contribution No. IS-2308 from GIGCAS, which is supported by the NSFC (No. 91328204, 41090374, 41121002) and the Chinese Academy of Sciences (KZCX1-YW-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Wang, Jt., Zhang, Lp. et al. The formation of porphyry copper deposits. Acta Geochim 36, 9–15 (2017). https://doi.org/10.1007/s11631-016-0132-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-016-0132-4

Keywords

Navigation