Skip to main content
Log in

Identical carbon isotope trends of carbonate and organic carbon and their environmental significance from the Changhsingian (end-Permian), Meishan, South China

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

High resolution carbon isotope analyses of carbonate and organic carbon from Meishan, South China showed that the variation of δ13Ccarb is marked by three large positive excursions during the Changhsingian (end-Permian). Carbon isotope stratigraphy during this stage shows three cyclic intervals in δ13Ccarb, with two cycles corresponding to the lower (Paleofusulinid minima Zone) and one corresponding to the upper Changhsingian (P. sinensis Zone). The large positive δ13Ccarb excursions indicate episodes of enhanced burial of isotopically light organic carbon, presumably in response to deep-water anoxia episodically extending into shallow water with the rise of sea level. The organic carbon during the Changhsingian is distinguished into two groups, and the δ13Corg of each group parallels (separately) the more detailed profile of δ13Ccarb, strongly showing that the values of fractionation Δ13Ccab-org remain relatively constant, with only two intervals with anomaly. The enhanced fractionation Δ13Ccab-org with large negative δ13Corg excursions apparently indicates significant inputs from sulfide-oxidizing bacteria and green sulfur bacteria, notably at bed 24 just predating mass extinction. Our evidence appears to support that the extended euxinic water is possible for the main pulse of mass extinction at the end-Permian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baud A., Atudorei V., and Sharp Z. (1996) Late Permian and early Triassic evolution of the Northern Indian margin: Carbon isotope and sequence stratigraphy [J]. Geodinamica Acta. 9, 57–77.

    Google Scholar 

  • Berner R.A. (2002) Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling [J]. Proc. Natl. Acad. Sci. U.S.A. 99, 4172–4177.

    Article  Google Scholar 

  • Berner R.A. (2005) The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic [J]. Geochim. et Cosmochim. Acta. 69, 3211–3217.

    Article  Google Scholar 

  • Bowring S.A., Erwin D.H., Jin Yugan, Martin M.W., David E.K., and Wang Wei (1998) U/Pb zircon geochronology and tempo of the end-Permian mass extinction [J]. Science. 280, 1039–1045.

    Article  Google Scholar 

  • Cao Changqun, Wang Wei, and Jin Yugan (2002) Carbon isotope excursions across the Permian-Triassic boundary in the Meishan section, Zhejiang Province, China [J]. Chinese Science Bulletin. 47, 1125–1129.

    Article  Google Scholar 

  • Cao Changqun, Love G.D., Hays L.E., Wang Wei, Shen Shuzhong, and Summons R.E. (2009) Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian extinction event [J]. Earth and Planetary Science Letters. 281, 188–201.

    Article  Google Scholar 

  • Chen Jinshi, Chu Xuelei, Shao Maorong, and Zhong Hua (1991) Carbon isotope study of the Permian/Triassic boundary seqencesin [J]. Chemical Geology. 86, 239–251.

    Google Scholar 

  • De Wit M.J., Ghosh J.G., de Villiers S., Rakotosolofo N., Alexander J., Tripathi A., and Looy C. (2002) Multiple organic carbon isotope reversals across the Permo-Triassic boundary of terrestrial Gondwana sequences: Clues to extinction patterns and delayed ecosystem recovery. [J]. Geol. 110, 227–240

    Article  Google Scholar 

  • Dolence E. Kurt., Dolence J.M., and Poulter C.D. (2001) Solid-Phase Synthesis of a Radiolabeled, Biotinylated, and Farnesylated Ca1a2X Peptide Substrate for Ras- and a-Mating Factor Converting Enzyme [J]. J. Bioconjugate Chemistry. 12, 35–43.

    Article  Google Scholar 

  • Grice K., Cao Changqun, Love G.D., Bottcher M.E., Twitchett R.J., Grosjean E., Summons R.E., Turgeon S.C., Dunning W., and Jin Yugan (2005) Photic zone euxinia during the Permian-Triassic superanoxic event [J]. Science. 307, 706–709.

    Article  Google Scholar 

  • Hayes J.M., Popp B.N., Takigiku R., and Johnson M.W. (1989) An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation [J]. Geochim. et Cosmochim. Acta. 53, 2961–2972.

    Article  Google Scholar 

  • Hayes J.M., Strauss H., and Kaufman A.J. (1999) The abundance of 13C in marine organic matter and isotope fractionation in the global biogeochemical cycle of carbon during the past 800 Ma [J]. Chemical Geology. 161, 103–125.

    Article  Google Scholar 

  • Hollander D.J. and Mckenzie J.A. (1991) CO2 control of carbon isotope fractionation during aqueous photosynthestic: A paleo-pCO2 barometer [J]. Geology. 19, 929–932.

    Article  Google Scholar 

  • Holser W.T., Schonlaub H.P., Attrep M., Boeckelmann K., Klein P., Magaritz M., Orth C.J., Fenninger A., Jenny C., and Kralik M. (1989) A unique geochemical record at the Permian/Triassic boundary [J]. Nature. 337, 39–44.

    Article  Google Scholar 

  • Isozaki Y. (1997) Permo-Triassic boundary superanoxia and stratified superocean: Records from lost deep sea [J]. Science. 276, 235–238.

    Article  Google Scholar 

  • Jin Yugan, Wang Yue, Wang Wei, Shang Qinhua, Cao Changqun, and Erwin D.H. (2000) Pattern of marine mass extinction near the Permian-Triassic boundary in South China [J]. Science. 289, 432–436.

    Article  Google Scholar 

  • Kaiho K. Chen Z.Q., Kawahata Y.K., and Sato H. (2006) Close-up the end-Permian mass extinction horizon recorded in the Meishan section, South China: Sedimentary, elemental, and biotic characterization and negative shift of sulfate sulfur isotope ratio [J]. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239, 396–405.

    Article  Google Scholar 

  • Kidder D.L. and Worsley T.R. (2004) Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery [J]. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203, 207–237.

    Article  Google Scholar 

  • Kiehl J.T. and Shield C.A. (2005) Climate simulation of the latest Permian: Implications for mass extinction [J]. Geology. 33. 757–760

    Article  Google Scholar 

  • Krull E.S., Lehrmann D.J., Druke D., Kessel B., Yu Y.Y., and Li R. (2004) Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, South China [J]. Palaeogeogr. Palaeoclimatol. Palaeoecol. 204, 297–315.

    Article  Google Scholar 

  • Kump L.R., Pavlov A., and Arthur M.A. (2005) Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia [J]. Geology. 33, 397–400.

    Article  Google Scholar 

  • Li Yucheng (1998) Carbon and oxygen isotope cyclostratigraphy of Upper Permian Changhsingian Limestone in Meishan section D, Changxing, Zhejiang (stratotype section in South China) [J]. J. Strati. Sinica. 22, 36–41 (in Chinese with English abstract).

    Google Scholar 

  • Li Yucheng (2003) Stable Isotope Cyclostratigraphy of the Permo-Triassic Limestones from South China: An Indexes as Stratigraphic Correlations and Paleoenvironmental Implications [M]. pp.1–139. University of Science and Technology of China Press, Hefei (in Chinese with English abstract).

    Google Scholar 

  • Looy C.V., Twitchett R.J., Morante R., Visscher H., and Wignall P.B. (2001) Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis [J]. Geology. 29, 351–354

    Article  Google Scholar 

  • Margaritz M., Krishnamurthy R.V., and Holser W.T. (1992) Parallel trends in organic and inorganic carbon isotopes across the Permian/Triassic boundary [J]. Amer. J. Sci. 292, 727–739.

    Article  Google Scholar 

  • Michaelis W., Seifert R., Nauhaus K., Treude T., Thiel V., Blumenberg M., Knittel K., Gieseke A., Peterknecht K., Pape T., Boetius A., Amann R., Jorgensen B.B., Widdel F., Peckmann J., Pimenov N.V., and Gulin M.B. (2002) Microbial reefs in the black sea fueled by anaerobic oxidation of methane [J]. Science. 297, 1013–1015.

    Article  Google Scholar 

  • Mundil R., Ludwig K.R., Metcalfe I., and Renne P.R. (2004) Age and timing of the Permian mass extinctions. U/Pb dating of closedsystem zircons [J]. Science. 305, 1760–1763.

    Article  Google Scholar 

  • Musashi M., Isozaki Y., Koike T., and Kreulen R. (2001) Stable carbon isotope signature in mid-Panthalassa shallow water carbonates across the permo-Triassic boundary: Evidence for 13C depleted superocean [J]. Earth Planet. Sci. Lett. 191, 9–20.

    Article  Google Scholar 

  • Newton R.J., Pevitt E.L., Wignall P.B., and Bottrell S.H. (2004) Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy [J]. Earth Planet. Sci. Lett. 218, 331–345.

    Article  Google Scholar 

  • Orphan V.J., House C.H., Hinrichs K.U., McKeegan K.D., and DeLong E.F. (2001) Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis [J]. Science. 293, 484–487.

    Article  Google Scholar 

  • Popp B.R., Laws E.A., Bidigare R.R., Dore J.E., Hanson K.L., and Wakeham S.G. (1998) Effct of phytoplankton cell geometry on carbon isotopic fractionation [J]. Geochim. et Cosmochim. Acta. 62, 69–77.

    Article  Google Scholar 

  • Qing Jianxiong, Zeng Yunfu, Chen Hongde, Tian Jingchun, and Yang Zuosheng (1999) Significance of varbon isotopes in carbonate sequence stratigraphy—As exemplified by the Permian System in Southwest China [J]. Chinese Journal of Geochemistry. 18, 69–79.

    Article  Google Scholar 

  • Rau G.H., Froelich P.N., Takahashi T., and Des Marais D.J. (1991) Does sedimentary organic δ13C record variations in Quaternary ocean [ CO2(aq)]? [J]. Paleoceanography. 6, 335–345.

    Article  Google Scholar 

  • Rau G.H., Takahashi T., and Des Marais D.J. (1989) Latitudinal variations in plankton δ13C: Implications for CO2 and productivity in past oceans [J]. Nature. 341, 516–518.

    Article  Google Scholar 

  • Riccardi A., Kump L.R., Arthur M.A., and D’Hondt S. (2007) Carbon isotopic evidence for chemocline upward excursions during the end-Permian event [J]. Palaeogeogra. Palaeoclimat. Palaeoeco. 248, 73–81.

    Article  Google Scholar 

  • Schouten S., van Kaam-peters H.M.E., Rijpstra W.I.C., Schoell M., and Sinninghe Damste J.S. (2000) Effects of an oceanic anoxic events on the stable carbon isotopic composition of early Toarcian carbon [J]. Amer. J. Sci. 300, 1–22.

    Article  Google Scholar 

  • Schwab V. and Spangenberg J.E. (2004) Organic geochemistry across the Permian/Triassic transition at the Idrijca valley, wastern Slovenia [J]. App. Geochem. 19, 55–72.

    Article  Google Scholar 

  • Sephton M.A., Looy C.V., Brinkhuis H.K., and Wignall P.B. (2005) Catastrophic soil erosion during the end-Permian biotic crisis [J]. Geology 33, 941–944.

    Article  Google Scholar 

  • Sheng Jinzhang, Chen Chuzhen, Wang Yigang, Rui Lin, Liao Zhuoting, Bando Yuji, Ishii Ken-ichi, Nakazawa Keiji, and Nakamura Koji (1984) Permian-Triassic boundary in middle and eastern Tethys [J]. Journal of the Faculty of Science, Hokkaido University. Series IV, Geology and Mineralogy. 21, 131–181.

    Google Scholar 

  • Wang Chunjiang (2007) Anomalous hopane distributions at the Permian-Triassic boundary, Meishan, China—Evidence for the end-Permian marine ecosystem collapse [J]. Org. Geochem. 38, 52–66.

    Article  Google Scholar 

  • Wang K., Geldsetzer H.H.J., and Krouse H.R. (1994) Permian-Triassic extinction: Organic evidence δ13C from British Columbia, Canada [J]. Geology. 22, 580–584.

    Article  Google Scholar 

  • Ward P.D., Botha J., Buick R., de Kock M.O., Erwin D.H., Garrison G.H., Kirschvink J.L., and Smith R. (2005) Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa [J]. Science. 307, 709–714.

    Article  Google Scholar 

  • Weidlich O. and Bernecker M. (2003) Suppersequence and composite sequence carbonate plateform growth: Permian and Triassic outcrop data of the Arabian plateform and Neo-Tethys [J]. Sedimentary Geology. 158, 87–116.

    Article  Google Scholar 

  • Wignall P.B. and Twitchett R.J. (1996) Oceanic anoxia and the end Permian mass extinction [J]. Science. 272, 1155–1158.

    Article  Google Scholar 

  • Xie Shucheng, Pancost R.D., Yin Hongfu, Wang Hongmei, and Evershed R.P. (2005) Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction [J]. Nature. 434, 494–497.

    Article  Google Scholar 

  • Xu Daoyi and Yan Zheng (1993) Carbon isotope and iridium event markers near the Permian/Triassic boundary in the Meishan section, Zhejiang Province, China [J]. Palaeogeogra. Palaeoclimat. Palaeoeco. 104, 171–176.

    Article  Google Scholar 

  • Yan Zheng, Xu Daoyi, Ye Lianfang, and Liu Rongmo (1991) Carbon isotope anomaly across Permian/Triassic boundary at Meishan section, Changxing, Zhejiang Province in China [J]. Palaeoworld (Nanjing). 1, 113–119 (in Chinese with English abstract).

    Google Scholar 

  • Yang Ruidong, Wang Shijie, Ouyang Ziyuan, Zhu Lijun, Jiang Lijun, Zhang Weihua, and Gao Hui (2005) Stratigraphical and biological significance of negative carbon isotopic anomalies in the basal Cambrian series of Guizhou Province [J]. Chinese Journal of Geochemistry. 24, 108–115.

    Article  Google Scholar 

  • Yin Hongfu and Tong Jinnan (1998) Multidisciplinary high-resolution correlation of the Permian-Triassic boundary [J]. Palaeogeogra. Palaeoclimat. Palaeoeco. 143, 199–212.

    Article  Google Scholar 

  • Yin Hongfu, Wu Shunbao, Din Meihua, Zhang Kexing, Tong Jinnan, and Yang Fengqing (1996) The Meishan section, candidate of the Global Stratotype Section and Point of the Permian-Triassic boundary. In The Palaeozoic-Mesozoic Boundary, Candidate of Global Stratotype Section and Point of the Permian-Triassic Boundary (ed. Yin Hongfu) [M]. pp.31–48. China University of Geology Press, Wuhan.

    Google Scholar 

  • Yin Hongfu, Zhang Kexin, Tong Jinnan, Yang Zunyi, and Wu Shunbao (2001) The Global Stratotype Section and Point (GSSP) of the Permian-Triassic boundary [J]. Episodes. 24, 102–114.

    Google Scholar 

  • Zhang Kexin, Tong Jinnan, Yin Hongfu, and Wu Shunbao (1997) Sequence stratigraphy of the Permian-Triassic boundary section of Changxing, Zhengjiang, Southern China [J]. Acta Geologica Sinica. 71, 90–103.

    Google Scholar 

  • Zhao Jinke, Sheng Jinzhang, and Yao Zhaoqi (1981) The Changhsingian and Permian-Triassic boundary of South China [J]. Bulletin Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences. 2, 1–95 (in Chinese with English abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucheng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Liu, W., Wang, W. et al. Identical carbon isotope trends of carbonate and organic carbon and their environmental significance from the Changhsingian (end-Permian), Meishan, South China. Chin. J. Geochem. 30, 496–506 (2011). https://doi.org/10.1007/s11631-011-0534-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-011-0534-2

Key words

Navigation