Skip to main content
Log in

Numerical and Experimental Study on Performance of a Low-Backpressure Polyhedral Thermoelectric Generator for Waste Heat Recovery

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Optimized fin arrangement and dimension of heat exchanger can improve the maximum output power of thermoelectric generator (TEG) system which converts the wasted heat into electricity with thermoelectric modules (TEMs). Considering that the geometric symmetry contributes to the temperature uniformity improvement and convenient TEMs arrangement, a low-backpressure TEG system based on a polyhedral-shape heat exchanger was developed. To assess the effect of inner topology and fin parameters on the heat transfer and output power of the TEG system, a realizable k-ε turbulence based numerical model was established and validated to perform numerical simulations. The results demonstrate that increasing fin length, fin width and fin intersection angle are beneficial to the average surface temperature, temperature distribution uniformity and maximum output power of the TEG system. Moreover, decreasing fin spacing distance contributes to the enhanced average surface temperature and maximum power of TEG system, and has insignificant effect on its temperature uniformity. The inserted fins with optimal length, width, intersection angle and spacing distance enhance higher output power, whereas result in increasing backpressure. The maximum difference between the experimental and simulation results is 3.2%, which validates the feasibility of the established numerical model. It also provides a theoretical reference to the optimal design and performance analysis of low-backpressure TEG systems used in automobile exhaust heat recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Champier D., Thermoelectric generators: A review of applications. Energy Conversion and Management, 2017, 140: 167–181.

    Article  Google Scholar 

  2. Wang Z.Q., Hu Y.H., Xia X.X., Comparison of conventional and advanced exergy analysis for dual-loop organic rankine cycle used in engine waste heat recovery. Journal of Thermal Science, 2021, 31(1): 177–190.

    Article  ADS  Google Scholar 

  3. Willars-Rodríguez F.J., Chávez-Urbiola E.A., Vorobiev P., Vorobiev Y.V., Investigation of solar hybrid system with concentrating Fresnel lens, photovoltaic and thermoelectric generators. International Journal of Energy Research, 2017, 41(3): 377–388.

    Article  Google Scholar 

  4. LaLonde A.D., Pei Y., Wang H., Jeffrey Snyder G., Lead telluride alloy thermoelectrics. Material Today, 2011, 14(11): 526–532.

    Article  Google Scholar 

  5. Quan R., Liu G.Y., Wang C.J., Zhou W., Huang L., Deng Y.D., Performance investigation of an exhaust thermoelectric generator for military SUV application. Coatings, 2018, 8(1): 45.

    Article  Google Scholar 

  6. Kim Y., Gu H.M., Kim C., Choi H., Lee G., Kim S., Yi K., Lee S., Cho B., High-performance self-powered wireless sensor node driven by a flexible thermoelectric generator. Energy, 2018, 162: 526–533.

    Article  Google Scholar 

  7. Leonov V., Thermoelectric energy harvesting of human body heat for wearable sensors. IEEE Sensor Journal, 2013, 13(6): 2284–2291.

    Article  ADS  Google Scholar 

  8. Meng F.K., Chen L.G., Feng Y.L., Xiong B., Thermoelectric generator for industrial gas phase waste heat recovery. Energy 2017, 135: 83–90.

    Article  Google Scholar 

  9. Jaziri N., Boughamoura A., Müller J., Mezghani B., Tounsi F., Ismail M., A comprehensive review of thermoelectric generators: technologies and common applications. Energy Reports, 2020, 6(7): 264–287.

    Article  Google Scholar 

  10. Quan R., Liang W.L., Quan S.L., Huang Z.K., Liu Z.Z., Chang Y.F., Tan B.H., Performance interaction assessment of automobile exhaust thermoelectric generator and engine under different operating conditions. Applied Thermal Engineering, 2022, 216: 119055.

    Article  Google Scholar 

  11. Fernández-Yáñez P., Armas O., Kiwan R., Stefanopoulou A.G., Boehman A.L., A thermoelectric generator in exhaust systems of spark-ignition and compression-ignition engines. A comparison with an electric turbogenerator. Applied Energy, 2018, 229: 80–87.

    Article  Google Scholar 

  12. Li B., Huang K., Yan Y., Li Y., Twaha S., Zhu J., Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles. Applied Energy, 2017, 205: 868–879.

    Article  Google Scholar 

  13. Demir M.E., Dincer I., Performance assessment of a thermoelectric generator applied to exhaust waste heat recovery. Applied Thermal Engineering, 2017, 120: 694–707.

    Article  Google Scholar 

  14. Espinosa N., Lazard M., Aixala L., Scherrer H., Modeling a thermoelectric generator applied to diesel automotive heat recovery. Journal of Electronic Materials, 2010, 39(9): 1446–1455.

    Article  ADS  Google Scholar 

  15. Kempf N., Zhang Y., Design and optimization of automotive thermoelectric generators for maximum fuel efficiency improvement. Energy Conversion and Management, 2016, 121: 224–231.

    Article  Google Scholar 

  16. Marvão A., Coelho P.J., Rodrigues H.C., Optimization of a thermoelectric generator for heavy-duty vehicles. Energy Conversion and Management, 2019, 179: 178–191.

    Article  Google Scholar 

  17. Li X.L., Xie C.J., Quan S.H., Huang L., Fang W., Energy management strategy of thermoelectric generation for localized air conditioners in commercial vehicles based on 48 V electrical system. Applied Energy, 2018, 231: 887–900.

    Article  Google Scholar 

  18. Bai W.R., Yuan X.H., Liu X., Numerical investigation on the performances of automotive thermoelectric generator employing metal foam. Applied Thermal Engineering, 2017, 124: 178–184.

    Article  Google Scholar 

  19. Kumar S., Heister S.D., Xu X., Salvador J., Meisner G.P., Thermoelectric generators for automotive waste heat recovery systems Part II: parametric evaluation and topological studies. Journal of Electronic Materials, 2013, 42(6): 944–955.

    Article  ADS  Google Scholar 

  20. Quan R., Li T., Yue Y.S., Chang Y.F., Tan B.H., Experimental study on a thermoelectric generator for industrial waste heat recovery based on a polyhedral-shape heat exchanger. Energies, 2020, 12(13): 3137.

    Article  Google Scholar 

  21. Quan R., Wang C.J., Wu F., Chang Y.F., Deng Y.D., Parameter matching and optimization of an isg mild hybrid powertrain based on an automobile exhaust thermoelectric generator. Journal of Electronic Materials, 2020, 49(5): 2734–2746.

    Article  ADS  Google Scholar 

  22. Mostafavi S.A., Mahmoudi M., Modeling and fabricating a prototype of a thermoelectric generator system of heat energy recovery from hot exhaust gases and evaluating the effects of important system parameters. Applied Thermal Engineering, 2018, 132: 624–636.

    Article  Google Scholar 

  23. Weng C.C., Huang M.J., A simulation study of automotive waste heat recovery using a thermoelectric power generator. International Journal of Thermal Sciences, 2013, 71: 302–309.

    Article  Google Scholar 

  24. Meng J.H., Zhang X.X., Wang X.D., Dynamic response characteristics of thermoelectric generator predicted by a three-dimensional heat-electricity coupled model. Journal of Power Sources, 2014, 245: 262–269.

    Article  ADS  Google Scholar 

  25. Luo D., Wang R.C., Yu W., Zhou W.Q., Parametric study of a thermoelectric module used for both power generation and cooling. Renewable Energy, 2020, 154: 542–552.

    Article  Google Scholar 

  26. Ebling D., Jaegle M., Bartel M., Jacquot A., Böttner H., Multiphysics simulation of thermoelectric systems for comparison with experimental device performance. Journal of Electronic Materials, 2009, 38(7): 1456–1461.

    Article  ADS  Google Scholar 

  27. Musial M., Borcuch M., Wojciechowski K., The influence of a dispersion cone on the temperature distribution in the heat exchanger of a thermoelectric generator. Journal of Electronic Materials, 2016, 45: 1517–1522.

    Article  ADS  Google Scholar 

  28. Bargiel P., Kostowski W., Klimanek A., Gorny K., Design and optimization of a natural gas-fired thermoelectric generator by computational fluid dynamics modeling. Energy Conversion and Management, 2017, 149: 1037–1047.

    Article  Google Scholar 

  29. Nayak R.K., Ray S., Sahoo S.S., Satapathy P.K., Effect of angle of attack and wind direction on limiting input heat flux for solar assisted thermoelectric power generator with plate fin heat sink. Solar Energy, 2019, 186: 175–190.

    Article  ADS  Google Scholar 

  30. Wang Y.C., Zhao W.S., Wang P.F., Jiang J., Luo X.Y., Thermal performance of elliptical fin-and-tube heat exchangers with vortex generator under various inclination angles. Journal of Thermal Science, 2021, 31(1): 257–270.

    Article  ADS  Google Scholar 

  31. Gou X.L., Xiao H., Yang S.W., Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system. Applied Energy, 2010, 87: 3131–3136.

    Article  Google Scholar 

  32. Niu X., Yu J.L., Wang S.Z., Experimental study on low-temperature waste heat thermoelectric generator. Journal of Power Sources, 2009, 188(2): 621–626.

    Article  ADS  Google Scholar 

  33. Zhao Y.L., Wang S.X., Ge M.H., Liang Z.J., Liang Y.F., Li Y.Z., Performance investigation of an intermediate fluid thermoelectric generator for automobile exhaust waste heat recovery. Applied Energy, 2019, 239: 425–433.

    Article  Google Scholar 

Download references

Acknowledgment

This paper was supported by the National Natural Science Foundation of China (51977061, 51407063, 61903129) and Open Foundation of Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System (HBSEES202205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Quan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, R., Li, Y., Li, T. et al. Numerical and Experimental Study on Performance of a Low-Backpressure Polyhedral Thermoelectric Generator for Waste Heat Recovery. J. Therm. Sci. 32, 109–124 (2023). https://doi.org/10.1007/s11630-022-1698-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-022-1698-2

Keywords

Navigation