Skip to main content
Log in

Heat Transfer Characteristics outside the Condenser of a Rotating Heat Pipe Grinding Wheel with a Lateral Air Impinging Jet

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

This study numerically analyzed the heat transfer characteristics outside the condenser of a rotating heat pipe grinding wheel (RHP-GW). The goal of this investigation is to determine the optimal structure and parameters for the condenser section of RHP-GW. Different fin height (f=0–7 mm), rotational Reynolds number (Rer=1602–6408) and jet Reynolds number (Rej=42 379–108 302) were analyzed under input heat flux of 4000 W/m2. A fully developed flow was imposed at the outlet of the nozzles. Results showed that the optimal heat transfer rate was obtained for fin height of 5 mm, which improved the average Nusselt number by 84% compared to the structure without fins. A critical Rej for each Rer that the impinging jet can reach the condenser section was found. The critical Rej value increases with Rer, which is in the range from 42 379 to 61 215 and 61 215 to 80 050 for Rer=6408 and Rer=9610, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D :

diameter of the condenser/mm

k :

turbulence kinetic energy/m2·s−2

k f :

fluid thermal conductivity/W·m−1·K−1

l c :

length of condenser/mm

Nu :

Nusselt number

P :

mean pressure/Pa

Pr :

Prandtl number

q″:

heat flux/W·m−2

Re j :

jet Reynolds number

Re r :

rotational Reynolds number

T :

temperature/K

T c :

mean temperature outside the condenser/K

T n :

temperature of air at the nozzle exit/K

U i :

mean velocity component in x direction/m·s−1

U j :

mean velocity component in y direction/m·s−1

y 0 :

position at the bottom of condenser

θ :

angle/°

μ :

dynamic viscosity/kg·m−1·s−1

ν :

kinematic viscosity/m2·s−1

ν t :

turbulent viscosity/m2·s−1

ρ :

density/kg·m−3

Ω :

rotational rate of RHP-GW/r·min−1

References

  1. Chen M., Sun F.H., Xue B.Y., Grinding burn mechanism of directionally solidified superalloy. Key Engineering Materials, 2001, 196: 61–68.

    Article  Google Scholar 

  2. Lavine A.S., Jen T.C., Coupled heat transfer to workpiece, wheel, and fluid in grinding, and the occurrence of workpiece burn. International Journal of Heat and Mass Transfer, 1991, 34(4–5): 983–992.

    Article  Google Scholar 

  3. Wang S.B., Kou H.S., Selections of working conditions for creep feed grinding. Part (II): workpiece temperature and critical grinding energy for burning. International Journal of Advanced Manufacturing Technology, 2004, 28(1–2): 38–44.

    Google Scholar 

  4. Song F., Ewing D., Ching C.Y., Experimental investigation on the heat transfer characteristics of axial rotating heat pipes. International Journal Heat and Mass Transfer, 2004, 47(22): 4721–4731.

    Article  Google Scholar 

  5. Daniels T.C., Williams R.J., Experimental temperature distribution and heat load characteristics of rotating heat pipes. International Journal of Heat and Mass Transfer, 1978, 21: 193–201.

    Article  ADS  Google Scholar 

  6. Song F., Ewing D., Ching C.Y., Fluid flow and heat transfer model for high-speed rotating heat pipes. International Journal Heat and Mass Transfer, 2003, 46(23): 4393–4401.

    Article  ADS  Google Scholar 

  7. Jen T.C., Gutierrez G., Eapen S., Investigation of heat pipe cooling in drilling applications-Part (I): Preliminary numerical analysis and verification. International Journal of Machine Tools & Manufacture, 2002, 42(5): 643–652.

    Article  Google Scholar 

  8. Judd R.L., Aftab K., Elbestawi M.A., An investigation of the use of heat pipes for machine tool spindle bearing cooling. International Journal of Machine Tools & Manufacture, 1994, 34(7): 1031–1043.

    Article  Google Scholar 

  9. Chen J.J., Fu Y.C., Gu Z.B., Shen H.F., He Q.S., Study on heat transfer of a rotating heat pipe cooling system in dry abrasive-milling. Applied Thermal Engineering, 2017, 115: 726–743.

    Article  Google Scholar 

  10. Ingole S.B., Sundaram K.K., Experimental average Nusselt number characteristics with inclined non-confined jet impingement of air for cooling application. Experimental Thermal and Fluid Science, 2016, 77: 124–131.

    Article  Google Scholar 

  11. Ming T., Cai C., Yang W., Shen W., Feng W., Zhou N., Optimization of dimples in microchannel heat sink with impinging jets—Part B: the influences of dimple height and arrangement. Journal of Thermal Science, 2018, 27(4): 321–330.

    Article  ADS  Google Scholar 

  12. Wang X.L., Lee J.H., Lu T.J., Song S.J., Kim T., A comparative study of single-/two-jet crossflow heat transfer on a circular cylinder. International Journal Heat and Mass Transfer, 2014, 78: 588–598.

    Article  Google Scholar 

  13. Datta A., Kumar S., Halder P., Heat transfer and thermal characteristics effects on moving plate impinging from Cu-Water nanofluid jet. Journal of Thermal Science, 2020, 29: 182–193.

    Article  ADS  Google Scholar 

  14. Cornaro C., Fleischer A.S., Rounds M., Goldstein R.J., Jet impingement cooling of a convex semi-cylindrical surface. International Journal of Thermal Sciences, 2001, 40(10): 890–898.

    Article  Google Scholar 

  15. Jeng T.M., Tzeng S.C., Liu T.C., Heat transfer behavior in a rotating aluminum foam heat sink with a circular impinging jet. International Journal of Heat and Mass Transfer, 2012, 55: 1419–1422.

    Article  Google Scholar 

  16. Jeng T.M., Tzeng S.C., Xu R., Heat transfer characteristics of a rotating cylinder with a lateral air impinging jet. International Journal of Heat and Mass Transfer, 2014, 70: 235–249.

    Article  Google Scholar 

  17. Singh D., Premachandran B., Kohli S., Experimental and numerical investigation of jet impingement cooling of a circular cylinder. International Journal of Heat and Mass Transfer, 2013, 60: 672–688.

    Article  Google Scholar 

  18. Wang D., Jin H., Ling X., Peng H., Yu J., Cui Z., Regulation of velocity zoning behaviour and hydraulic jump of impinging jet flow on a spinning disk reactor. Chemical Engineering Journal, 2020, 390: 124392.

    Article  Google Scholar 

  19. Kim H., Choi H., Kim D., Chung J., Kim H., Lee K., Experimental study on splash phenomena of liquid jet impinging on a vertical wall. Experimental Thermal and Fluid Science, 2020, 116: 110111.

    Article  Google Scholar 

  20. Sagot B., Antonini G., Christgen A., Buron F., Jet impingement heat transfer on a flat plate at a constant wall temperature. International Journal of Thermal Sciences, 2008, 47: 1610–1619.

    Article  Google Scholar 

  21. Singh D., Premachandran B., Sangeeta K., Effect of nozzle shape on jet impingement heat transfer from a circular cylinder. International Journal of Thermal Sciences, 2015, 96: 45–69.

    Article  Google Scholar 

  22. Fluent, Inc., Fluent 6.3 User’s Guide, 2006.

  23. Yang Z.L., Zhuo X.R., Yang C., Experimental study on convective heat transfer on the surface of a horizontal high speed rotating cylinder. Industrial Heating, 2002, 05: 17–20.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20190752), the National Natural Science Foundation of China (Grant No. 51905275), the Natural Science Foundation of Colleges and Universities in Jiangsu Province (Grant No. 19KJB460020), the Faculty Research Funding of Nanjing Forestry University (Grant No. 163040111), and the Open Foundation of Jiangsu Wind Power Generation Engineering and Technology Center (No. Zk19-03-12).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiajia Chen or Yucan Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhang, L., Fu, Y. et al. Heat Transfer Characteristics outside the Condenser of a Rotating Heat Pipe Grinding Wheel with a Lateral Air Impinging Jet. J. Therm. Sci. 30, 493–503 (2021). https://doi.org/10.1007/s11630-021-1415-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-021-1415-6

Keywords

Navigation