Skip to main content
Log in

A Critical Review of Real Gas Effects on the Regenerative Refrigerators

  • Invited Review
  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

The regenerative refrigeration is an important reverse work-heat conversion cycle with a theoretical coefficient of performance (COP) identical to the Carnot efficiency. Practical regenerative refrigerators are capable of working down to 4 K and largely fulfill the refrigeration requirement of modern technologies in many fields, especially for space applications. However, the enthalpy flow associated with the pressure dependence, abbreviated as pressure-induced enthalpy flow, brought about by real gas effects degrades the theoretical COP of the refrigerator to below about 30% of the Carnot efficiency at the temperatures of below the critical point. This paper reviews the long history of exploring the real gas effects which dates back to the 1970s and continues to now. Important explorations of uncovering the loss mechanism and reducing such losses are summarized. The theories that are in accordance with experimental results and simulation results are expounded. We further carry out analyses on the expansion components, including the pulse tube and the clearance gap. Several inferences are made in order to explore the long-lasting puzzles about real gas effects. It is emphasized that the underlying cause of the loss in the regenerator is an indirect effect of the real gas properties. Further study about carrying out a direct verification of the theory is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AC:

alternative-current flow

COP:

coefficient of performance

c p :

specific heat capacity/J·kg−1 ·K1

DC:

direct-current flow

\(\left\langle {{{\dot H}_p}} \right\rangle \) :

time-averaged pressure-induced enthalpy flow/W

\(\left\langle {{{\dot H}_T}} \right\rangle \) :

time-averaged heat-associated enthalpy flow/W

k T :

coefficient between \(\left\langle {{{\dot H}_T}} \right\rangle \) and temperature gradient

\(\dot m\) :

mass flux/kg·s−1

P r :

pressure ratio

PTR:

pulse tube refrigerator

p :

pressure/MPa

\(\left\langle {p\dot V} \right\rangle \) :

PV power/acoustic power/W

\(\left\langle {\dot Q} \right\rangle \) :

heat flow or refrigeration power/W

\(\left\langle {{{\dot Q}_{{\rm{loss}}}}} \right\rangle \) :

heat loss in the pulse tube/W

rCOP:

relative Carnot COP

\(\left\langle {\dot S} \right\rangle\) :

time-averaged entropy flow/W·K−1

T :

temperature/K

t :

time/s

U :

internal energy/W

v :

specific volume/m3·kg−1

x :

position/mm

Z :

compressibility factor

β :

volume expansivity/K−1

ε :

attenuation coefficient of heat load

0:

mean (pressure)

c:

cold end

cond:

conduction

DC:

direct-current flow

ex:

exit flow

g:

gas

gen:

(entropy) generation

gross:

gross (refrigeration power)

h:

hot end

i :

index

in:

inflow

max:

maximum

min:

minimum

n:

number of grid

net:

net (refrigeration power)

prec:

precooling

PT:

pulse tube

R:

regenerator

r:

reduced

T :

temperature related

tot:

total amount

x :

unfixed position

References

  1. Zhang A.K., Wu Y.N., Liu S.S., Yu H.Q., Yang B.Y., Development of pulse tube cryocoolers at SITP for space application. Journal of Low Temperature Physics, 2018, 191: 228–241.

    ADS  Google Scholar 

  2. Zhang A.K., Wu Y.N., Liu S.S., Zhu H.F., Zeng Y.P., Jiang Z.H., et al., Effect of impedance on a compressor driving pulse tube refrigerator. Applied Thermal Engineering, 2017, 124: 688–694.

    Google Scholar 

  3. Radebaugh R., The state of the art and recent developments. Journal of Physics Condensed Matter, 2009, 21(16): 164–219.

    Google Scholar 

  4. Zhu S.M., Yu G.Y., Li X.W., Ying M., Yan C.G., Dai W., et al., Acoustic field characteristics of a free-piston Stirling cryocooler with large cooling capacity at liquid nitrogen temperature. Applied Thermal Engineering, 2019, 147: 324–335.

    Google Scholar 

  5. Nast T., Olson J., Champagne P., Evtimov B., Frank D., Roth E., et al., Overview of Lockheed Martin cryocoolers. Cryogenics, 2006, 46(2–3): 164–168.

    ADS  Google Scholar 

  6. Walker G., Cryocoolers (Part 1: Fundamentals & Part 2: Applications). New York and London, 1983.

  7. Radebaugh R., Thermodynamics of regenerative refrigerators., Shonan Tech. Center, Kamakura, Japan, 2003: 1–20

    Google Scholar 

  8. Wang K., Dubey S., Choo F.H., Duan F., Modelling of pulse tube refrigerators with inertance tube and mass-spring feedback mechanism. Applied Energy, 2016, 171: 172–183.

    Google Scholar 

  9. Zen D., Ao Y., Zhang X., Liu C., Engineering thermodynamics, third ed., Beijing, 2002. (in Chinese)

  10. Lemmon E.W., McLinden M., Huber M., NIST Standard Reference Database 23, NIST Reference Fluid Thermodynamic and Transport Properties-REFPROP, 2002.

  11. Huang Y.H., Chen G.B., Arp V.D., Debye equation of state for fluid helium-3. The Journal of Chemical Physics, 2006, 125(5): 1–10.

    Google Scholar 

  12. Putintsev N.M., Putintsev D.N., Heat capacity and thermal expansion of water and helium. Journal of Thermal Science, 2017, 26(2): 125–131.

    ADS  Google Scholar 

  13. Radebaugh R., Huang Y., O’Gallagher A., Gary J., Calculated regenerator performance at 4 K with helium-4 and helium-3. Advances in Cryogenic Engineering 53, Chattanooga, TN, Melville, 2008, 985(1): 225–234.

    ADS  Google Scholar 

  14. Cao Q., Qiu L.M., Gan Z.H., Real gas effects on the temperature profile of regenerators. Cryogenics, 2014, 61: 31–37.

    ADS  Google Scholar 

  15. Gary J., O’Gallagher A., Radebaugh R., Huang Y., Marquardt E., REGEN3.3: User Manual. 2006.

  16. Schmidt G., The theory of Lehmann’s calorimetric machine. Z Ver Dtsch Ing 1871, 15(1).

    Google Scholar 

  17. Finkelstein T., Thermodynamic analysis of stirling engines. Journal of Spacecraft and Rockets, 1967, 4(9): 1184–1189.

    ADS  Google Scholar 

  18. Modest M.F., Tien C.L., Analysis of real-gas and matrix-conduction effects in cyclic cryogenic regenerators. Journal of Heat Transfer, 1973, 95(2): 199–205.

    Google Scholar 

  19. Daney D.E., Cooling capacity of Stirling cryocoolers - the split cycle and nonideal gas effects. Cryogenics, 1982, 22(10): 531–535.

    ADS  Google Scholar 

  20. Jin X., Ouyang R., Chen W., Effect of non-ideal gas on refrigerating capacity of G-M cryocooler. Journal of low-temperature physics, 1987, 9(2): 103–107.

    Google Scholar 

  21. Wu P.Y., Research on the scheme of G-M cryocooler working at 4–5 K. Cryogenics and superconductivity, 1988(2): 1–6. (in Chinese)

  22. Chen G., Sun G., Liang J., Effect of non-ideal working medium on performance of nonmetal cryogenic refrigerating machine. Journal of zhejiang university (natural science edition), 1989(01): 141–149. (in Chinese)

  23. Jin X., Real gas effects in the VM refrigerator. Low Temperature and Specialty Gases, 1990(2): 24–28. (in Chinese)

  24. Chen J., Yan Z., Effect of non-ideal heat recovery on performance of Stirling refrigerating machine. Cryogenic engineering, 1991(6): 37–41. (in Chinese)

  25. Yan Z.J., Inherent non-ideal regenerative properties of Stirling refrigerating machines working with the neon. Low temperature and characteristic gases, 1993(4): 28–31. (in Chinese)

  26. Barron R., Cryogenic systems, second ed., New York, 1985.

  27. Luo E.C., Dai W., Radebaugh R., Thermoacoustic and regenerative functions of alternating-flow regenerator. Journal of Engineering Thermophysics, 2006, (01): 1–4. (in Chinese)

  28. Gedeon D., Sage: Object-oriented software for cryocooler design. Proceedings of the 8th International Cryocooler Conference, New York, America, 1995, 8: 281–292.

  29. Wang C., Numerical analysis of 4 K pulse tube coolers: Part I. Numerical simulation. Cryogenics, 1997, 37(4): 207–213.

    ADS  Google Scholar 

  30. Ju Y.L., De Waele A.T.A.M., A computational model for two-stage 4K-pulse tube cooler: Part I. theoretical model and numerical method. Journal of Thermal Science, 2002, 10(4): 342–347.

    ADS  Google Scholar 

  31. Lang A., Hafner H.U., Heiden C., Systematic investigations of regenerators for 4.2 K-refrigerators. Advances in Cryogenic Engineering, 1998, 43: 1573–1580.

    Google Scholar 

  32. Chen G.B., Qiu L.M., Zheng J.Y., Yan P.D., Gan Z.H., Bai X., et al., Experimental study on a double-orifice two-stage pulse tube refrigerator. Cryogenics, 1997, 37(5): 271–273.

    ADS  Google Scholar 

  33. Gao J.L., Matsubara Y., Experimental investigation of 4 K pulse tube refrigerator. Cryogenics, 1994, 34(1): 25–30.

    Google Scholar 

  34. Kuriyama T., Ohtani Y., Nakagome H., et al., Temperature profile and mass flow rate distributions in regenerator of Gifford-McMahon refrigerator using magnetic regenerator materials. Journal of Cryogenics and Superconductivity Society of Japan, 1996, 31(04): 203–208.

    Google Scholar 

  35. De Waele A.T.A.M., Xu M.Y., Ju Y.L., Nonideal-gas effect in regenerators. Cryogenics, 1999, 39(10): 847–851.

    ADS  Google Scholar 

  36. Kittel P., Enthalpy, entropy, and exergy flows real gas effects in ideal pulse tube cryocoolers. Advances in Cryogenic Engineering, 2006, 51: 345–352.

    ADS  Google Scholar 

  37. Wang C., Numerical analysis of 4 K pulse tube coolers: Part II. Performances and internal processes. Cryogenics, 1997, 37(4): 215–220.

    ADS  Google Scholar 

  38. Gao J.L., Hiresaki Y., Matsubara Y., A hybrid two-stage refrigerator operated at temperatures below 4K. Advances in Cryogenic Engineering, 1996, 41: 1495–1502.

    Google Scholar 

  39. Xu M.Y., de Waele A., Ju Y.L., A pulse tube refrigerator below 2 K. Cryogenics, 1999, 39(10): 865–869.

    ADS  Google Scholar 

  40. Cao Q., Qiu L.M., Zhi X.Q., Han L., Gan Z.H., Zhang X.B., et al., Impedance magnitude optimization of the regenerator in Stirling pulse tube cryocoolers working at liquid-helium temperatures. Cryogenics, 2013, 58: 38–44.

    ADS  Google Scholar 

  41. Will M.E., De Waele A.T.A.M., Ideal pulse-tube refrigerators with real gases. Journal of Applied Physics, 2005, 98(4): 1–4.

    Google Scholar 

  42. Cao Q., Real gas effects on the COP of regenerators working at low temperatures. Proceedings of the 19th International Cryocooler Conference, Boulder, America, 2016, 16: 319–323.

  43. Gan Z.H., Li Z.P., Chen J., Dai L., Qiu L.M., Design and preliminary experimental investigation of a 4 K Stirling-type pulse tube cryocooler with precooling. Journal of Zhejiang University: Science A, 2009, 10(9): 1277–1284.

    Google Scholar 

  44. Qiu L.M., Cao Q., Zhi X.Q., Han L., Gan Z.H., Yu Y.B., et al., Operating characteristics of a three-stage Stirling pulse tube cryocooler operating around 5 K. Cryogenics, 2012, 52(7–9): 382–388.

    ADS  Google Scholar 

  45. Cao Q., Sun Z., Li Z.M., Luan M.K., Tang X., Li P., et al., Reduction of real gas losses with a DC flow in the regenerator of the refrigeration cycle. Applied Energy, 2019, 235: 139–146.

    Google Scholar 

  46. De Waele A.T.A.M., Pulse-tube refrigerators: principle, recent developments, and prospects. Physica B: Condensed Matter, 2000, 280(1–4): 479–482.

    ADS  Google Scholar 

  47. Kittel P., Ultimate temperature of pulse tube cryocoolers. Advances in Cryogenic Engineering, 2010, 55: 1601–1608.

    ADS  Google Scholar 

  48. Thummes G., Bender S., Heiden C., Approaching the He-4 lambda line with a liquid nitrogen precooled two-stage pulse tube refrigerator. Cryogenics, 1996, 36(9): 709–711.

    ADS  Google Scholar 

  49. Chen G.M., Chen G.B., Yu J.P., Study of the minimum refrigeration temperature of regenerative cryocoolers. Cryogenics, 1997, 37(7): 397–400.

    ADS  Google Scholar 

  50. Jiang N., Lindemann U., Giebeler F., Thummes G., A 3He pulse tube cooler operating down to 1.3 K. Cryogenics, 2004, 44(11): 809–816.

    ADS  Google Scholar 

  51. Nast T., Olson J., Roth E., Evtimov B., Frank D., Champagne P., Development of remote cooling systems for low-temperature, Space-Borne systems. Proceedings of the 14th International Cryocooler Conference, New York, America, 2007: 33–40.

  52. Qiu L.M., Han L., Zhi X.Q., Dietrich M., Gan Z.H., Thummes G., Investigation on phase shifting for a 4 K Stirling pulse tube cryocooler with He-3 as working fluid. Cryogenics, 2015, 69: 44–49.

    ADS  Google Scholar 

  53. Chen L.B., Wu X.L., Liu X.M., Wang J., Xi X.T., Zhou Y., et al., Study on high-frequency pulse tube cryocoolers working in liquid-helium temperature range. Journal of Engineering Thermophysics, 2020, 41(5): 1073–1076.

    Google Scholar 

  54. Nast T., Olson J., Champagne P., Mix J., Evtimov B., Roth E., et al., Development of a 4.5 K pulse tube cryocooler for superconducting electronics. Advances in Cryogenic Engineering, 2008, 53: 881–886.

    ADS  Google Scholar 

  55. Watanabe A., Swift G.W., Brisson J.G., Measurements with a recuperative superfluid Stirling refrigerator. Advances in Cryogenic Engineering, 1996, 41: 1527–1533.

    Google Scholar 

  56. Jahromi A.E., Miller F.K., A sub-Kelvin superfluid pulse tube refrigerator driven by paramagnetic fountain effect pump. Cryogenics, 2014, 62: 202–205.

    ADS  Google Scholar 

  57. Radebaugh R., Regenerator behavior with heat input or removal at intermediate temperatures. Proceedings of the 11th International Cryocooler Conference, New York, America, 2001: 409–418.

  58. Rawlins W., Radebaugh R., Bradley P.E., Timmerhaus K.D., Energy flows in an orifice pulse tube refrigerator. Advances in Cryogenic Engineering, 1994, 39: 1449–1456.

    Google Scholar 

  59. Jung J., Jeong S., Expansion efficiency of pulse tube in pulse tube refrigerator including shuttle heat transfer effect. Cryogenics, 2005, 45(5): 386–396.

    ADS  Google Scholar 

  60. Huang C., Cao Q., Zhi X., Xia X., Qiu L., Effects of DC flow on pulse tube cryocooler working at liquid hydrogen and liquid nitrogen temperatures. Applied Thermal Engineering, 2018, 137: 451–460.

    Google Scholar 

  61. Ju Y.L., Real gas features on the performance of pulse tube cryocoolers. Advances in Cryogenic Engineering, 2002, 47: 950–957.

    ADS  Google Scholar 

  62. Wang C., Intermediate cooling from pulse tube and regenerator in a 4 K pulse tube cryocooler. Cryogenics, 2008, 48(3–4): 154–159.

    ADS  Google Scholar 

  63. Ravex A., Trollier T., Tanchon J., Prouve T., Free third-stage cooling for two-stage 4 K pulse tube cryocooler. Proceedings of the 14th International Cryocooler Conference, New York, America, 2007: 157–162.

  64. Zhu S.W., Ichikawa M., Nogawa M., Inoue T., 4K pulse tube refrigerator and excess cooling power. Advances in Cryogenic Engineering, 2002, 47: 633–640.

    ADS  Google Scholar 

  65. Cao Q., Attainability of the Carnot efficiency with real gases in the regenerator of the refrigeration cycle. Applied Energy, 2018, 220(15): 705–712.

    Google Scholar 

  66. Cao Q., Li Z., Luan M., Sun Z., Tang X., Li P., et al., Investigation on precooling effects of 4 K Stirling-type pulse tube cryocoolers. Journal of Thermal Science, 2019, 28(4): 714–726.

    ADS  Google Scholar 

  67. Wang C., Thummes G., Heiden C., Experimental study of staging method for two-stage pulse tube refrigerators for liquid 4He temperatures. Cryogenics, 1997, 37(12): 857–863.

    ADS  Google Scholar 

  68. Wang C., Helium liquefaction with a 4 K pulse tube cryocooler. Cryogenics, 2001, 41(7): 491–496.

    ADS  Google Scholar 

  69. Choudhury A., Sahu S., Experimental helium liquefier with a GM cryocooler. Review of Scientific Instruments, 2017, 88(6): 1–6.

    Google Scholar 

  70. Zhu S.W., Wu P.Y., Chen Z.Q., Double inlet pulse tube refrigerators: an important improvement. Cryogenics, 1990, 30(6): 514–520.

    Google Scholar 

  71. Tsuchiya A., Xu M.Y., Investigation of DC flow effects on a 4K two-stage pulse tube cryocooler. 11th European Conference on Applied Superconductivity, Genoa, Italy, 2014: 1–4.

  72. Duval J.M., Charles I., Gauthier A., Trollier T., Tanchon J., Linder M., et al., Experimental results of 20 K pulse tube cold fingers for space applications. Proceedings of the 15th International Cryocooler Conference, Long Beach, America, 2009: 71–77.

  73. Ju Y., Wang C., Zhou Y., Dynamic experimental study of a multi-bypass pulse tube refrigerator with two-bypass tubes. Journal of Thermal Science, 1998, 7(1): 61–66.

    ADS  Google Scholar 

  74. Hofmann A., DC flow in pulse tube coolers. Advances in Cryogenic Engineering, 2002, 47: 911–917.

    ADS  Google Scholar 

  75. Cao Q., Investigation on refrigeration mechanism of multi-stage Stirling pulse tube cryocoolers working at liquid helium temperatures. Zhejiang University, Hangzhou, China, 2012.

    Google Scholar 

  76. Wang C., Thummes G., Heiden C., Effects of DC gas flow on performance of two-stage 4 K pulse tube coolers. Cryogenics, 1998, 38(6): 689–695.

    ADS  Google Scholar 

  77. Qiu L.M., Zhi X.Q., Han L., Cao Q., Gan Z.H., Performance improvement of multi-stage pulse tube cryocoolers with a self-precooled pulse tube. Cryogenics, 2012, 52(10): 575–579.

    ADS  Google Scholar 

  78. Wang Y.N., Cui Y.H., Dai W., Pfotenhauer J.M., Wang X.T., Luo E.C., Effects of DC flow on a cryogen-free Vuilleumier type pulse tube cryocooler. International Journal of Refrigeration, 2020, 114: 148–154.

    Google Scholar 

  79. Tang K., Feng Y., Jin T., Jin S., Yang R., Impact of Gedeon streaming on the efficiency of a double-inlet pulse tube refrigerator. Applied Thermal Engineering, 2017, 111: 445–454.

    Google Scholar 

  80. Cao Q., Luan M.K., Huo B., Li Z.M., Sun Z., Li P., et al., Reduction of real gas losses with a DC flow in the practical regenerator of the refrigeration cycle. Applied Thermal Engineering, 2021, 183: 116123.

    Google Scholar 

  81. Pan C.Z., Zhang T., Zhou Y., Wang J.J., A novel coupled VM-PT cryocooler operating at liquid helium temperature. Cryogenics, 2016, 77: 20–24.

    ADS  Google Scholar 

  82. Han L., Qiu L.M., Gan Z.H., huang C., Xia X., Zhi X.Q., Effect of DC flow on a Stirling-type pulse tube cryocooler working around liquid-helium temperature range. Cryogenics, 2016(5): 1–4. (in Chinese)

  83. Gedeon D., DC gas flows in stirling and pulse tube cryocoolers. In: Ross RG, editor. Proceedings of the 9th International Cryocooler Conference, New York, America, 1997: 385–392.

  84. Liu D., Li A., Li S., Wu Y., Performance of the SITP 35K two-stage Stirling cryocooler. Infrared Technology and Applications XXXVI, Orlando, America, 2010, 1–6.

Download references

Acknowledgement

This work is supported by National Natural Science Foundation of China (No. 51506152 and No. 51777141) and the Fundamental Research Funds for the Central Universities (inter-disciplinary program) under the contract No. kx0080020173427. The revision of this manuscript by Prof. D. Roundy (emeritus) from Tongji University, and now an adjunct professor with BYU Hawaii, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Luan, M., Li, P. et al. A Critical Review of Real Gas Effects on the Regenerative Refrigerators. J. Therm. Sci. 30, 782–806 (2021). https://doi.org/10.1007/s11630-020-1381-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-020-1381-4

Keywords

Navigation