Skip to main content
Log in

Numerical prediction of film cooling effectiveness over flat plate using variable turbulent prandtl number closures

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Numerical simulations were performed to predict the film cooling effectiveness on the fiat plate with a three- dimensional discrete-hole film cooling arrangement. The effects of basic geometrical characteristics of the holes, i.e. diameter D, length L and pitch S/D were studied. Different turbulent heat transfer models based on constant and variable turbulent Prandtl number approaches were considered. The variability of the turbulent Prandtl number Pr t in the energy equation was assumed using an algebraic relation proposed by Kays and Crawford, or employing the Abe, Kondoh and Nagano eddy heat diffusivity closure with two differential transport equations for the temperature variance k θ and its destruction rate ε θ . The obtained numerical results were directly compared with the data that came from an experiment based on Transient Liquid Crystal methodology. All implemented models for turbulent heat transfer performed sufficiently well for the considered case. It was confirmed, however, that the two- equation closure can give a detailed look into film cooling problems without using any time-consuming and inherently unsteady models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Abe and T. Kondoh and Y. Nagano. A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows -Part 2 Thermal Field Calculations. International Journal of Heat and Mass Transfer, 38: 1467–1481, 1995.

    Article  MATH  Google Scholar 

  2. J. Ahn and M. T. Schobeiri and J.-C. Han and H.-K. Moon. Effect of rotation on leading edge region film cooling of a gas turbine blade with three rows of film cooling holes. Int. J. Heat Mass Transfer, 50: 15–25, 2007.

    Article  Google Scholar 

  3. S. W. Burd and R. W. Kaszeta and T. W. Simon. Measurements in Film Cooling Flows: Hole L/D and Turbulence Intensity Effects. ASME Journal of Turbomachinery, 120: 791–798, 1998.

    Article  Google Scholar 

  4. A. C. Chambers and D. R. H. Gillespie and P. T. Ireland and G. M. Dailey. A novel transient liquid crystal technique to determine heat transfer coefficient distributions and adiabatic wall temperature in a three-temperature problem. ASME J. Turbomachinery, 125: 538–545, 2003.

    Article  Google Scholar 

  5. H. H. Cho and D. H. Rhee and B. G. Kim. Enhancement of Film Cooling Performance Using a Shaped Film Cooling Hole with Compound Angle Injection. JSME International Journal, Series B, 44(1): 99–110, 2001.

    Article  ADS  Google Scholar 

  6. P. A. Durbin. Application of near-wall turbulence model to boundary layers and heat transfer. Int. J. Heat and Fluid Flow, 14: 316–323, 1993.

    Article  Google Scholar 

  7. S. V. Ekkad and D. Zapata and J. C. Han. Film Effectiveness Over a Flat Surface with Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method. ASME Journal of Turbomachinery, 119: 587–593, 1997.

    Article  Google Scholar 

  8. M. J. Findlay and M. Salcudean and I.S. Gartshore. Jets in a Crossflow: Effects of Geometry and Blowing Ratio. ASME Journal of Fluids Engineering, 121: 373–378, 1999.

    Article  Google Scholar 

  9. Z. Gao and D. P. Narzary and J.-C. Han. Film cooling on a gas turbine blade pressure side or suction side with axial shaped holes. Int. J. Heat Mass Transfer, 51: 2139–2152, 2008.

    Article  Google Scholar 

  10. I. Gartshore and M. Salcudean and I. Hassan. Film Cooling Injection Hole Geometry: Hole Shape Comparison for Cooling Orientation. AIAA Journal, 39(8): 1493–1499, 2001.

    Article  ADS  Google Scholar 

  11. B. Deng, W. Wu, S. Xi A near-wall two-equation heat transfer model for wall turbulent flows Int. J. Heat Mass Transfer, 44 (2001), pp. 691–698

    Article  MATH  Google Scholar 

  12. C. A. Hale and M. W. Plesniak and S. Ramadhyani. Film Cooling Effectiveness for Short Film Cooling Holes Fed by a Narrow Plenum. ASME Journal of Turbomachinery, 122: 553–557, 2000.

    Article  Google Scholar 

  13. N. Hay and D. Lampard. Discharge Coefficient of Turbine Cooling Holes: A Review. ASME Journal of Turbomachinery, 120: 314–319, 1998.

    Article  Google Scholar 

  14. D. G. Hyams and J. H. Leylek. A Detailed Analysis of Film-Cooling Physics: Part III-Streamwise Injection with Shaped Holes. ASME Journal of Turbomachinery, 122: 122–132, 2000.

    Article  Google Scholar 

  15. M. Karcz. Mean and turbulent thermal fields due to film cooling via an eddy heat diffusivity closure. TASK Quarterly, 10: 377–390, 2006.

    Google Scholar 

  16. M. Karcz and J. Badur. An alternative two-equation turbulent heat diffusivity closure. Int. J. Heat Mass Transfer, 48: 2013–2022, 2005.

    Article  MATH  Google Scholar 

  17. W. M. Kays. Turbulent Prandtl Number -Where Are We?. ASME Journal of Heat Transfer, 116: 284–295, 1994.

    Article  ADS  Google Scholar 

  18. A. Kohli and D. G. Bogard. Fluctuating Thermal Field in the Near?Hole Region for Film Cooling Flows. ASME Journal of Turbomachinery, 120: 86–91, 1998.

    Article  Google Scholar 

  19. D. Lakehal and G. S. Theodoridis and W. Rodi. Computation of Film Cooling of a Flat Plate by Lateral Injection from a Row of Holes. International Journal of Heat and Fluid Flow, 19: 418–430, 1998.

    Article  Google Scholar 

  20. J. H. Leylek and R. D. Zerkle. Discrete-Jet Cooling: A Comparison of Computational Results with Experiments. ASME Journal of Turbomachinery, 116: 358–368, 1994.

    Article  Google Scholar 

  21. C.-L. Liu and H.-R. Zhu and J.-T. Bai and D.-C. Xu. Experimental and numerical investigation on the film cooling of waist-shaped slot holes comparing with converging slot holes. ASME J. Turbomachinery, 134(011021): 1–10, 2012.

    Google Scholar 

  22. C.-L. Liu and H.-R. Zhu and J.-T. Bai and D.-C. Xu. Film cooling performance of converging slot-hole rows on a gas turbine blade. International Journal of Heat and Mass Transfer, 53: 5232–5241, 2010.

    Article  Google Scholar 

  23. C.-L. Liu and H.-R. Zhu and J.-T. Bai and D.-C. Xu. Film Cooling Performance of Converging-Slot Holes With Different Exit-Entry Area Ratios. ASME J. Turbomachinery, 133(011020): 1–11, 2011.

    Google Scholar 

  24. K. T. McGovern and J. H. Leylek. A Detailed Analysis of Film?Cooling Physics: Part II - Compound-Angle Injection with Cylindrical Holes. ASME Journal of Turbomachinery, 122: 113–121, 2000.

    Article  Google Scholar 

  25. J.-M. Miao and C.-Y. Wu. Numerical approach to hole shape effect on film cooling effectiveness over flat plate including internal impingement cooling chamber. Int. J. Heat Mass Transfer, 49: 919–938, 2006.

    Article  MATH  Google Scholar 

  26. S. Ou and R. B. Rivir. Leading edge film cooling heat transfer with high free stream turbulence using a transient liquid crystal image method. Int. J. Heat Fluid Flow, 22: 614–623, 2001.

    Article  Google Scholar 

  27. H. A. Rydholm. An Experimental Investigation of the Velocity and Temperature Fields of Cold Jets Into a Hot Crossflow. ASME Journal of Turbomachinery, 120: 320–326, 1998.

    Article  Google Scholar 

  28. D. L. Schmidt and B. Sen and D. G. Bogard. Film Cooling with Compound Angle Holes: Adiabatic Effectiveness. ASME Journal of Turbomachinery, 118: 807–813, 1996.

    Article  Google Scholar 

  29. K. A. Thole and M. Gritsh and A. Schulz and S. Wittig. Flowfield Measurements for Film—Cooling Holes with Expanded Exits. ASME Journal of Turbomachinery, 120: 327–336, 1998.

    Article  Google Scholar 

  30. G. Vogel and A. B. A. Graf and J. von Wolfersdorf and B. Weigand. A novel transient heater-foil technique for liquid crystall experiments on film-cooled surfaces. ASME J. Turbomachinery, 125: 529–537, 2003.

    Article  Google Scholar 

  31. D. K. Walters and J. H. Leylek. A Detailed Analysis of Film-Cooling Physics: Part I Streamwise Injection with Cylindrical Holes. ASME Journal of Turbomachinery, 122: 102–112, 2000.

    Article  Google Scholar 

  32. D. K. Walters and J. H. Leylek. A Systematic Computational Methodology Applied to a Three-Dimensional Film-Cooling Flowfield. ASME Journal of Turbomachinery, 119: 777–785, 1997.

    Article  Google Scholar 

  33. G. Wilfert and S. Wolff. Influence of Internal Flow on Film Cooling Effectivness. ASME Journal of Turbomachinery, 122: 327–333, 2000.

    Article  Google Scholar 

  34. Y. Yu and C.-H. Yen and T. I.-P. Shih and M. K. Chyu and S. Gogineni. Film cooling effectiveness and heat transfer coefficient distributions around diffusion shaped holes. ASME J. Heat Transfer, 124: 820–827, 2002.

    Article  Google Scholar 

  35. FLUENT User’s Guide. Fluent Inc., Lebanon, USA, 1997–2005.

  36. G. He and Y. Guo and A. T. Hsu. The effect if Schmidt number on turbulent scalar mixing in a jet-in-crossflow. International Journal of Heat and Mass Transfer, 42: 3727–3738, 1999.

    Article  MATH  Google Scholar 

  37. L.-Y. Jiang and I. Campbell. Reynolds analogy in combustor modelin. International Journal of Heat and Mass Transfer, 51: 1251–1263, 2008.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochrymiuk, T. Numerical prediction of film cooling effectiveness over flat plate using variable turbulent prandtl number closures. J. Therm. Sci. 25, 280–286 (2016). https://doi.org/10.1007/s11630-016-0861-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-016-0861-z

Keywords

Navigation