Skip to main content
Log in

Simplified numerical study of evaporation processes inside vertical tubes

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

The paper presents a simplified numerical model of evaporation processes inside vertical tubes. In this model only the temperature fields in the fluid domain (the liquid or two-phase mixture) and solid domain (a tube wall) are determined. Therefore its performance and efficiency is high. The analytical formulas, which allow calculating the pressure drop and the distribution of heat transfer coefficient along the tube length, are used in this model. The energy equation for the fluid domain is solved with the Control Volume Method and for the solid domain with the Finite Element Method in order to determine the temperature field for the fluid and solid domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

area, m2

d i :

inner diameter of tube, m

f D :

Darcy-Waisbach friction coefficient, —

G :

mass velocity, kg/(m2 s)

g :

gravitational acceleration, m/s2

h :

heat transfer coefficient, W/(m2·K)

i :

specific enthalpy, J/kg

k :

thermal conductivity, W/(m K)

L :

tube length, m

N, M :

number of nodes in vertical and horizontal direction (solid domain), —

m :

mass flow rate, kg/s

p :

pressure, bar

p crit :

critical pressure, bar

p in :

inlet pressure, bar

p r :

reduced pressure p/p crit

Δp :

pressure drop, bar

q i :

heat flux density at the inner surface of tube wall, W/m2

q o :

heat flux density at the outer surface of tube wall, W/m2

q onb :

critical heat flux for the onset of nucleate boiling, W/m2

q 0 :

reference heat flux density, W/m2

r, z :

radial, and axial coordinates (cylindrical coordinate frame), m

r b :

critical nucleation radius, m

r i :

inner radius of tube, m

r o :

outer radius of tube, m

R p :

height of wall roughness, μm

T :

temperature, °C

T in :

inlet temperature, °C

T sat :

saturation temperature, °C

T :

bulk temperature, °C

X :

dryness fraction, —

X cr :

critical dryness fraction — X cr = 0.5, —

ɛ :

void fraction, —

µ:

dynamic viscosity, Pa·s

Φ2 Fr :

the multiplier of single phase (liquid) pressure drop used in two-phase Friedel model, —

ρ :

density, kg/m3

ρ H :

homogenous density of the two-phase mixture, kg/m3

σ :

surface tension, N/m

g :

vapor

l :

liquid

sp :

single-phase

tp :

two-phase

FrH :

Froude number (homogenous density model), —

Pr:

Prandtl number, —

Re:

Reynolds number —

WeH :

Weber number (homogenous density model),-

References

  1. Thome J. R.: Wolverine Tube Engineering Data Book 3rd ed, Wolverine Tube, 2004–2010.

    Google Scholar 

  2. Kakac S., Bergles A. E., Mayinger F.: Heat exchangers: thermal-hydraulic fundamentals and design, Hemisphere Publishing, Washington, 1981.

    Google Scholar 

  3. Kandlikar S. G.: Handbook of Phase Change: Boiling and Condensation, CRC Press, New York, 1999.

    Google Scholar 

  4. Mills A. F.: Heat Transfer 2nd ed., Prentice Hall, Upper Saddle River, New Jersey, 1999.

    Google Scholar 

  5. Collier J. G., Thome J. R.: Convective Boiling and Condensation 3rd ed., Oxford Univ. Press, Oxford, 1999.

    Google Scholar 

  6. Grądziel S.: Modelling of Thermal and Flow Phenomena occurring in evaporator of boiler with natural circulation (In Polish), Cracow Univ. of Technology Press, Cracow, 2012.

    Google Scholar 

  7. Matsuo S., Teramoto K., Alam M. M. A., Kim H. D., Yu S.: Effect of non-equilibrium condensation of moist air on unsteady behavior of shock waves around a circular arc blade, Journal of Thermal Sciences, 16(2), 2007, pp. 134–139.

    Article  ADS  Google Scholar 

  8. Doerffer P., Szumowski A., Yu S.: The effect of air humidity on shock wave induced incipient separation, Journal of Thermal Science, 9(1), 2000, pp. 45–50.

    Article  ADS  Google Scholar 

  9. Ocłoń P., Nowak M., Majewski K.: Numerical simulation of water evaporation inside vertical circular tubes, AIP Conf. Proc. 1558, 2419 (2013).

    ADS  Google Scholar 

  10. MATLAB online documentation: http://www.mathworks.com/help/matlab.

  11. XSteam v. 2.6 for MATLAB (IAPWS IF-97 Steam-tables): http://www.mathworks.com/matlabcentral/fileexchange/9817-x-steam-thermodynamic-properties-of-water-and-steam.

  12. Klimenko V. V.: A generalized correlation for two-phase forced convection heat transfer, Int. J. Heat and Mass Transfer, 31, 1988, pp. 541–552.

    Article  Google Scholar 

  13. Chen J. C.: A correlation for boiling heat transfer to saturated fluids in convective flow. ASME preprint 63-Ht-34, presented at 6th National Heat Transfer Conference in Boston, 1963.

    Google Scholar 

  14. Stainer D., Taborek J.: Flow boiling heat transfer in vertical tubes correlated by an asymptotic model, Heat Transfer Engineering, 13(2), 1992, pp. 43–69.

    Article  ADS  Google Scholar 

  15. Friedel L.: Improved Friction Drop Correlations for Horizontal and Vertical Two-Phase Pipe-Flow, European Two-phase Flow Group Meeting, Ispra, Italy, paper E2, 1979.

    Google Scholar 

  16. Chisholm D.: Pressure Gradients due to Friction during the Flow of Evaporating Two-Phase Mixtures in Smooth Tubes and Channels, Int. J. Heat Mass Transfer, 16, pp. 347–358, 1973.

    Article  Google Scholar 

  17. Lockhart R. W., Martinelli R. C.: Proposed Correlation of Data for Isothermal Two-phase Flow, Two Component Flow in Pipes, Chem. Eng. Prog., 45, 1949, pp. 39–48.

    Google Scholar 

  18. Rouhani S. Z., Axelsson E.: Calculation of void volume fraction in the sub-cooled and quality boiling regions, Int J. Heat Mass Transfer, 13, pp. 383–393, 1970.

    Article  Google Scholar 

  19. Chung T. J.: Computational Fluid Dynamics 2nd ed, Cambridge Univ. Press., Cambridge, 2010.

    Book  MATH  Google Scholar 

  20. Anderson J.: Computational Fluid Dynamics: The basics with applications, McGraw Hill, New York, 1995.

    Google Scholar 

  21. Zienkiewicz O. C., Taylor R. L.: The Finite Element Method 6th ed., Elsevier, Oxford, 2005.

    MATH  Google Scholar 

  22. Taler J., Duda P.: Solving direct and inverse heat conduction problems, Springer, Berlin, 2006.

    Book  MATH  Google Scholar 

  23. Taler J., Ocłoń P.: Finite Element Method in Steady State and Transient Heat Conduction, Encyclopedia of Thermal Stresses R. Hetnarski (Ed.), Springer, Berlin, 2014.

    Google Scholar 

  24. Ocłoń P., Łopata S., Nowak M.: Comparative study of conjugate gradient algorithms performance on the example of steady-state axisymmetric heat transfer problem, Archives of Thermodynamics, 34(3), 2013, pp. 15–44.

    ADS  Google Scholar 

  25. Conn A. R., Gould N. I. M., Toint Ph. L.: Trust-Region Methods, MPS/SIAM Series on Optimization, SIAM and MPS, Philadelphia, 2000.

    Book  Google Scholar 

  26. Łopata S., Ocłoń P.: Analysis of operating conditions for high performance heat exchanger with the finned elliptical tube, Rynek Energii, 5(102), 2012, pp. 112–124.

    Google Scholar 

  27. Łopata S., Ocłoń P.: Investigation of the flow conditions in a high performance heat exchanger, Archives of Thermodynamics, 31(3), 2010, pp. 37–53.

    Google Scholar 

  28. Ocłoń P., Nowak M., Węglowski B., Nabagło T., Cisek P., Jaremkiewicz M., Majewski K.: Determination of the temperature fields in a fluid and a solid domain during the water evaporation processes in vertical round tubes, Journal of Applied Computer Science (accepted for print).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ocłoń, P., Nowak, M. & Łopata, S. Simplified numerical study of evaporation processes inside vertical tubes. J. Therm. Sci. 23, 177–186 (2014). https://doi.org/10.1007/s11630-014-0693-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-014-0693-7

Keywords

Navigation