Skip to main content
Log in

Flow-field analysis of anti-kidney vortex film cooling

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Film cooling is an important measure to enable an increase of the inlet temperature of a gas turbine and, thereby, to improve its overall efficiency. The coolant is ejected through spanwise rows of holes in the blades or endwalls to build up a film shielding the material. The holes often are inclined in the downstream direction and give rise to a kidney vortex. This is a counter-rotating vortex pair, with an upward flow direction between the two vortices, which tends to lift off the surface and to locally feed hot air towards the blade outside the pair. Reversing the rotational sense of the vortices reverses these two drawbacks into advantages. In the considered case, an anti-kidney vortex is generated using two subsequent rows of holes both inclined downstream and yawed spanwise with alternating angles. In a previous study, we performed large-eddy simulations (which focused on the fully turbulent boundary layer) of this anti-kidney vortex film-cooling and compared them to a corresponding physical experiment. The present work analyzes the simulated flow field in detail, beginning in the plenum (inside the blade or endwall) through the holes up to the mixture with the hot boundary layer. To identify the vortical structures found in the mean flow and in the instantaneous flow, we mostly use the λ 2 criterion and the line integral convolution (LIC) technique indicating sectional streamlines. The flow regions (coolant plenum, holes, and boundary layer) are studied subsequently and linked to each other. To track the anti-kidney vortex throughout the boundary layer, we propose two criteria which are based on vorticity and on LIC results. This enables us to associate the jet vortices with the cooling effectiveness at the wall, which is the key feature of film cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldstein R. J.: Film Cooling, In: Advances in Heat Transfer, vol.7, pp.321–379, (1971).

    Article  Google Scholar 

  2. Cortelezzi L., Karagozian A. R.: On the Formation of the Counter-Rotating Vortex Pair in Transverse Jets, Journal of Fluid Mechanics, vol.446, pp.347–373, (2001).

    MATH  ADS  MathSciNet  Google Scholar 

  3. Fric T. F., Roshko A.: Vortical Structure in the Wake of a Transverse Jet, Journal of Fluid Mechanics, vol.279, pp.1–47, (1994).

    Article  ADS  Google Scholar 

  4. Bagheri S., Schlatter P., Schmid P. J., Henningson D. S.: Global Stability of a Jet in Crossflow, Journal of Fluid Mechanics, vol.624, pp.33–44, (2009).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Lee S. W., Kim Y. B., Lee J. S.: Flow Characteristics and Aerodynamic Losses of Film Cooling Jets with Compound Angle Orientations, Journal of Turbomachinery, vol.119, pp.310–319, (1997).

    Article  Google Scholar 

  6. Haven B. A., Kurosaka M.: Kidney and Anti-Kidney Vortices in Crossflow Jets, Journal of Fluid Mechanics, vol.352, pp.27–64, (1997).

    Article  ADS  Google Scholar 

  7. Jubran B. A., Maiteh B. Y.: Film Cooling and Heat Transfer from a Combination of Two Rows of Simple and/or Compound Angle Holes in Inline and/or Staggered Configuration, International Journal of Heat and Mass Transfer, vol.34, Num 6, pp.495–502, (1999).

    Google Scholar 

  8. Farhadi-Azar R., Ramezanizadeh M., Taeibi-Rahni M., Salimi M.: Compound Triple Jets Film Cooling Improvements via Velocity and Density Ratios: Large Eddy Simulation, Journal of Fluids Engineering, vol.133, Num 3, pp.031202-1–13, (2011).

    Google Scholar 

  9. Yao Y., Maidi M.: Direct Numerical Simulation of Single and Multiple Square Jets in Cross-Flow, Journal of Fluids Engineering, vol.133, Num 3, pp.031201-1–10, (2011).

    Google Scholar 

  10. Dhungel A., Lu Y., Phillips W, Ekkad S. V., Heidmann J.: Film Cooling From a Row of Holes Supplemented with Antivortex Holes, Journal of Turbomachinery, vol. 131, Num 2, pp.021007-1–10, (2009).

    Google Scholar 

  11. Ahn J., Jung I. S., Lee J. S.: Film Cooling from Two Rows of Holes with Opposite Orientation Angles: Injectant Behavior and Adiabatic Film Cooling Effectiveness, International Journal of Heat and Fluid Flow, vol.24, Num 1, pp.91–99, (2003).

    Article  Google Scholar 

  12. Kusterer K., Bohn D., Sugimoto T., Tanaka R.: Dou ble-Jet Ejection of Cooling Air for Improved Film Cooling, Journal of Turbomachinery, vol.129, pp.809–815, (2007).

    Article  Google Scholar 

  13. Gräf L., Kleiser L.: Large-Eddy Simulation of Double-Row Compound-Angle Film Cooling: Setup and Validation, Computers and Fluids, vol.43, pp.58–67, (2011).

    Article  MATH  Google Scholar 

  14. Vos J. B., Van Kemenade V., Ytterström A., Rizzi A. W.: Parallel NSMB: An Industrialized Aerospace Code for Complete Aircraft Simulations, In: Parallel Computational Fluid Dynamics, North Holland, Amsterdam, 1996, pp.49–58, (1997).

  15. Gräf L., Kleiser L.: Large-Eddy Simulation of Double-Row Compound-Angle Film-Cooling: Computational Aspects, In: High Performance Computing on Vector Systems 2010, pp.185–196, Springer, Heidelberg, (2010).

    Chapter  Google Scholar 

  16. Schlatter P., Stolz S., Kleiser L.: LES of Transitional Flows using the Approximate Deconvolution Model, International Journal of Heat and Fluid Flow, vol.25, Num. 3, pp.549–558, (2004).

    Article  Google Scholar 

  17. Jarrin N., Benhamadouche S., Laurence D., Prosser R.: A Synthetic-Eddy-Method for Generating Inflow Conditions for Large-Eddy Simulations, International Journal of Heat and Fluid Flow, vol.27, Num 4, pp.585–593, (2006).

    Article  Google Scholar 

  18. Pritz B., Magagnato F., Gabi M.: Inlet Condition for Large-Eddy Simulation Applied to a Combustion Chamber, In: Conference on Modelling Fluid Flow 06, pp.845–850, Budapest, (2006).

  19. Thompson K. W.: Time Dependent Boundary Conditions for Hyperbolic Systems, II, Journal of Computational Physics, vol.89, pp.439–461, (1990).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Jeong J., Hussain F.: On the Identification of a Vortex, Journal of Fluid Mechanics, vol.285, pp.69–94, (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Terzi von D. A., Sandberg R. D., Fasel H. F.: Identification of Large Coherent Structures in Supersonic Axisymmetric Wakes, Computers and Fluids, vol.38, Num 8, pp.1638–1650, (2009).

    Article  MathSciNet  Google Scholar 

  22. Cabral B., Leedom L.C.: Imaging Vector Fields Using Line Integral Convolution, In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp.263–270, New York, (1993).

  23. Truesdell C. A.: The Kinematics of Vorticity, Num 19 in Indiana University Publications Science Series, Indiana University Press, Bloomington, (1954).

    MATH  Google Scholar 

  24. Hunt J. C. R., Wray A. A., Moin P.: Eddies, Streams, and Convergence Zones in Turbulent Flows, In: Proceedings of the 1988 Summer Program, Stanford, pp.193–208, (1988).

  25. Chong M. S., Perry A. E., Cantwell B. J.: A General Classification of Three-Dimensional Flow Fields, Physics of Fluids A: Fluid Dynamics, vol.2, Num 5, pp.765–777, (1990).

    Article  ADS  MathSciNet  Google Scholar 

  26. Wilcox D. C.: Basic Fluid Mechanics, DCW Industries, La Sañada, 2nd edition, (2000).

    Google Scholar 

  27. Ziefle J., Kleiser L.: Assessment of a Film-Cooling Flow Structure by Large-Eddy Simulation, Journal of Turbulence, vol.9, Num 29, pp.1–25, (2008).

    Google Scholar 

  28. Bogard D. G., Thole K. A.: Gas Turbine Film Cooling, Journal of Propulsion and Power, vol.22, Num 2, pp.249–270, (2006).

    Article  Google Scholar 

  29. Yuan L. L., Street R. L.: Trajectory and Entrainment of a Round Jet in Crossflow, Physics of Fluids, vol.10, Num 9, pp.2323–2335, (1998).

    Article  ADS  Google Scholar 

  30. Aga V., Rose M., Abhari R. S.: Experimental Flow Structure Investigation of Compound Angled Film Cooling, Journal of Turbomachinery, vol.130, Num 3, pp.031005-1–8, (2008).

    Google Scholar 

  31. Robinson S. K.: Coherent Motions in the Turbulent Boundary Layer, Annual Review in Fluid Mechanics, vol.23, pp.601–639, (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partly funded by Swiss National Science Foundation (SNF) with project number 200020-116310.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gräf, L., Kleiser, L. Flow-field analysis of anti-kidney vortex film cooling. J. Therm. Sci. 21, 66–76 (2012). https://doi.org/10.1007/s11630-012-0520-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-012-0520-y

Keywords

Navigation