Skip to main content
Log in

Effective thermal conductivity analysis of xonotlite-aerogel composite insulation material

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

A 3-dimensional unit cell model is developed for analyzing effective thermal conductivity of xonotlite-aerogel composite insulation material based on its microstructure features. Effective thermal conductivity comparisons between xonotlite-type calcium silicate and aerogel as well as xonotlite-aerogel composite insulation material are presented. It is shown that the density of xonotlite-type calcium silicate is the key factor affecting the effective thermal conductivity of xonotlite-aerogel composite insulation material, and the density of aerogel has little influence. The effective thermal conductivity can be lowered greatly by composite of the two materials at an elevated temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Lu, M.C. Ardunini-Schuster, J. Kuhn, et al. Thermal conductivity of monolithic organic aerogels. Science, 1992, 255(5047): 971–972

    Article  ADS  Google Scholar 

  2. M. Schmidt, F. Schwertfeger. Applications for silica aerogel products. J. Non-Crystalline Solids, 1998, 225(1): 364–368

    Article  ADS  Google Scholar 

  3. M.S. Douglas, M. Alok, B. Ulrich. Aerogel-based thermal insulation. J. Non-Crystalline Solids, 1998, 225(1): 254–259

    Article  Google Scholar 

  4. N.W. Wieslawa. Effect of Na and Al on the phase composition and morphology of autoclaved calcium silicate hydrates. Cement and Concrete Research, 1999, 29(11): 1759–1767

    Article  Google Scholar 

  5. W. Ni, Z.Y. Cao, X.L. Shu. Quality effect of xonotlite-type calcium silicate thermal insulation materials by C2S. China Petroleum Machinery, 1996, 24(12): 495–500

    Google Scholar 

  6. M.Q. Li, Y.F. Chen, S.Q. Xia, et al. Hydrothermal synthesis of micro-porous spherical particles of calcium silicate. J. Chinese Ceramic Society, 2000, 28(5): 401–406

    Google Scholar 

  7. Q.J. Zheng, W. Wang. Calcium silicate based high efficiency thermal insulation. British Ceramic Transactions, 2000, 99(4): 187–190

    Article  MathSciNet  Google Scholar 

  8. S.X. Cheng. Experiment preparation of a super insulator calcium silicate composite with nanometer pore. PhD thesis, University of Science and Technology Beijing, Beijing, 2005

    Google Scholar 

  9. L.W. Hrubesh, R.W. Pekala. Thermal properties of organic and inorganic aerogels. J. Materials Research, 1994, 9(3): 731–738

    Article  ADS  Google Scholar 

  10. P.J. Burns, C.L. Tien. Natural convection in porous media bounded by concentric spheres and horizontal cylinders. Int. J. Heat Mass Transfer, 1979, 22(6): 929–939

    Article  ADS  Google Scholar 

  11. T.G. Xi. A study on thermophysical properties of inorganic material. Shanghai Science and Technology, Shanghai, 1981

    Google Scholar 

  12. R.W. Zimmerman. Thermal conductivity of fluid-saturated rocks. J. Petrol. Sci. Eng., 1989, 3(3): 219–227

    Article  Google Scholar 

  13. L.S. Verma, A.K. Shrotriya, R. Singh, et al. Thermal conduction in two-phase materials with spherical and no-spherical inclusions. J. Phys. D: Appl. Phys., 1991, 24(10): 1729–1737

    Article  ADS  Google Scholar 

  14. C.T. Hsu, P. Cheng, K.W. Wong. A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media. ASME J. Heat Transfer, 1995, 117(2): 264–269

    Article  Google Scholar 

  15. Z.Q. Chen, P. Cheng, C.T. Hsu. A theoretical and experimental study on stagnant thermal conductivity of bi-dispersed porous media. Int. Comm. Heat Mass Transfer, 2000, 27(5): 601–610

    Article  Google Scholar 

  16. S.Q. Zeng, A. Hunt, R. Greif. Geometric structure and thermal conductivity of porous medium silica aerogel. ASME J. Heat Transfer, 1995, 117(4): 1055–1058

    Article  Google Scholar 

  17. X.X. Zhang, G.S. Wei, F. Yu. Influence of some parameters on effective thermal conductivity of nano-porous aerogel super insulator. Proceedings of the ASME Summer Heat Transfer Conference, HT 2005, San Franscisco, 2005: 7–12

  18. G.S. Wei, X.X. Zhang, F. Yu. Thermal conductivity of xonotlite insulation material. Int. J. Thermophysics, 2007, 2007, 28(4): 1718–1729

    Article  ADS  Google Scholar 

  19. O.J. Lee, K.H. Lee, T.J. Yin, et al. Determination of mesopore size of aerogels from thermal conductivity measurements. J. Non-Crystalline Solids, 2002, 298(2–3): 287–292

    Article  ADS  Google Scholar 

  20. X. Lu, R. Caps, J. Fricke, et al. Correlation between structure and thermal conductivity of organic aerogels, J. Non-Crystal Solids, 1995, 188(3): 226–234

    Article  ADS  Google Scholar 

  21. S.Q. Zeng, A. Hunt, R. Greif. Transport properties of gas in silica aerogel. J. Non-Crystalline Solids, 1995, 186(2): 264–270

    Article  ADS  Google Scholar 

  22. R. Siegel and J.R. Howell. Thermal radiation heat transfer, fourth ed. Taylor & Francis, New York·London, 2002

    Google Scholar 

  23. S.Q. Zeng, P.C. Stevens, A.J. Hunt, et al. Thin-film-heater thermal conductivity apparatus and measurement of thermal conductivity of silica aerogel. Int. J. Heat Mass Transfer, 1996, 39(11): 2311–2317

    Article  Google Scholar 

  24. J.S.Q. Zeng, R. Greif, P. Stevens, et al. Effective optical constants n and k and extinction coefficient of silica aerogel. J. Mater. Res., 1996, 11(3): 687–693

    Article  ADS  Google Scholar 

  25. U. Heinemann, R. Caps, J. Fricke. Radiation-conduction interaction: an investigation on silica aerogels. Int. J. Heat Mass Transfer, 1996, 39(10): 2115–2130

    Article  Google Scholar 

  26. J. Fricke, T. Tillotson. Aerogels: production, characterization, and applications. Thin Solid Films, 1997, 297(1–2): 212–223

    Article  ADS  Google Scholar 

  27. X.X. Zhang, G.S. Wei, F. Yu. Thermal radiative properties of xonotlite insulation material. J. Thermal Science, 2005, 14(3): 281–283, 253

    Article  ADS  Google Scholar 

  28. S.E. Gustafsson, E. Karawack, M.N. Khan. Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids. J. Phys. D: Appl. Phys., 1979, 12(9): 1411–1421

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, G., Zhang, X. & Yu, F. Effective thermal conductivity analysis of xonotlite-aerogel composite insulation material. J. Therm. Sci. 18, 142–149 (2009). https://doi.org/10.1007/s11630-009-0142-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-009-0142-1

Keywords

Navigation