Skip to main content
Log in

Adaptations of the floral characteristics and biomass allocation patterns of Gentiana hexaphylla to the altitudinal gradient of the eastern Qinghai-Tibet Plateau

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

This study addressed the floral component traits and biomass allocation patterns of Gentiana hexaphylla as well as the relationships of these parameters along an elevation gradient (approximately 3700 m, 3800 m, 3900 m, and 4000 m) on the eastern Qinghai-Tibet Plateau. The plant height, floral characteristics, and biomass allocation of G. hexaphylla were measured at different altitudes after field sampling, sorting, and drying. Plant height was significantly greater at 3700 m than that at other elevations. Flower length was significantly greater at 4000 m than that at other elevations, whereas the flower length at low elevations showed no significant differences. Corolla diameter increased with altitude, although the difference was not significant between 3800 m and 3900 m. Variations in biomass accumulation, including the aboveground, photosynthetic organ, flower and belowground biomasses, showed non-linear responses to changes in altitude. The aboveground and photosynthetic organ biomasses reached their lowest values at 4000 m, whereas the belowground and flower biomass reached minimum values at 3700 m. The sexual reproductive allocation of G. hexaphylla also increased with altitude, with a maximum observed at 4000 m. These results suggest that external environmental factors and altitudinal gradients as well as the biomass accumulation and allocation of G. hexaphylla play crucial roles in plant traits and significantly affect the ability of this species to adapt to harsh environments. The decreased number of flowers observed at higher altitudes may indicate a compensatory response for the lack of pollinators at high elevations, which is also suggested by the deformed flower shapes at high altitudes. In addition, the individual plant biomass (i.e., plant size) had significantly effect on flower length and corolla diameter. Based on the organ biomass results, the optimal altitude for G. hexaphylla in the eastern Qinghai-Tibet Plateau is 3800 m, where the plant exhibits minimum propagule biomass and asexual reproductive allocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arroyo MTK, Armesto JJ, Primack RB (1985) Community studies in pollination ecology in the high temperate Andes of central Chile II. Effect of temperature on visitation rates and pollination possibilities. Plant systematics and evolution 149(3–4): 187–203. DOI: 10.1007/BF00983305

    Article  Google Scholar 

  • Arroyo MTK, Primack R, Armesto J (1982) Community studies in pollination ecology in the high temperate Andes of central Chile. I. Pollination mechanisms and altitudinal variation. American Journal of Botany 69(1): 82–97. DOI: 10.2307/ 2442833

    Article  Google Scholar 

  • Barry RG (1992) Mountain weather and climate, Cambridge University Press, New York. pp 1–10.

    Google Scholar 

  • Bingham RA, Orthner AR (1998) Efficient pollination of alpine plants. Nature 391(6664): 238–239. DOI: 10.1038/34564

    Article  Google Scholar 

  • Bliss L (1962) Adaptations of arctic and alpine plants to environmental conditions. Arctic 15(2): 117–144. DOI: 10.14430/arctic3564

    Article  Google Scholar 

  • Bliss L (1971) Arctic and alpine plant life cycles. Annual Review of Ecology and Systematics 2(1): 405–438. DOI: 10.1146/ annurev.es.02.110171.002201

    Article  Google Scholar 

  • Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants-an economic analogy. Annual Review of Ecology and Systematics 16(1): 363–392. DOI: 10.1146/annurev. ecolsys.16. 1.363

    Article  Google Scholar 

  • Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics 13: 115–155. DOI: 10.1016/S0065-2660(08)60048-6

    Google Scholar 

  • Bynum MR, Smith WK (2001) Floral movements in response to thunderstorms improve reproductive effort in the alpine species Gentiana algida (Gentianaceae). American Journal of Botany 88(6): 1088–1095. DOI: 10.2307/2657092

    Article  Google Scholar 

  • Chen W, Wu Y, Wu N et al. (2008) Effect of snow-cover duration on plant species diversity of alpine meadows on the eastern Qinghai-Tibetan Plateau. Journal of Mountain Science 5(4): 327–339. DOI: 10.1007/s11629-008-0182-0

    Article  Google Scholar 

  • Duan Y, He Y, Liu J (2005) Reproductive ecology of the Qinghai-Tibet Plateau endemic Gentiana straminea (Gentianaceae), a hermaphrodite perennial characterized by herkogamy and dichogamy. Acta Oecologica 27(3): 225–232. DOI: 10.1016/ j.actao.2005.01.003

    Article  Google Scholar 

  • Ellenberg H (1988). Vegetation ecology of central Europe, Cambridge University Press, New York pp 5–40

    Google Scholar 

  • Fabbro T, Körner C (2004) Altitudinal differences in flower traits and reproductive allocation. Flora-Morphology, Distribution, Functional Ecology of Plants 199(1): 70–81. DOI: 10.1078/0367-2530-00128

    Article  Google Scholar 

  • Fischer K, Fiedler K (2002) Reaction norms for age and size at maturity in response to temperature: a test of the compound interest hypothesis. Evolutionary Ecology 16(4): 333–349. DOI: 10.1023/A: 1020271600025

    Article  Google Scholar 

  • Friend A, Woodward F (1990) Evolutionary and ecophysiological responses of mountain plants to the growing season environment. Advances in Ecological Research 20: 59–124. DOI: 10.1016/S0065-2504(08)60053-7

    Article  Google Scholar 

  • Grime J (1979) Plant strategies and vegetation processes, John Wiley & Sons, Ltd., Chichester-New York-Brisbane-Toronto, US. pp 5–6, 7-9, 20-75. DOI: 10.1007/BF02895358

    Google Scholar 

  • Guo H, Mazer SJ, Du G (2010) Geographic variation in primary sex allocation per flower within and among 12 species of Pedicularis (Orobanchaceae): proportional male investment increases with elevation. American Journal of Botany 97(8): 1334–1341. DOI: 10.3732/ajb.0900301

    Article  Google Scholar 

  • Hautier Y, Randin CF, Stöcklin J, et al. (2009) Changes in reproductive investment with altitude in an alpine plant. Journal of Plant Ecology 2(3): 125–134. DOI: 10.1093/jpe/rtp011

    Article  Google Scholar 

  • Iwasa Y, Cohen D (1989) Optimal growth schedule of a perennial plant. American Naturalist 133(4): 480–505. DOI: 10.1086/284931

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems (2nd eds.). Springer-Verlag, Heidelberg. pp 1–30.

    Book  Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution 22(11): 569–574. DOI: 10.1016/j.tree.2007.09.006

    Article  Google Scholar 

  • Körner C, Neumayer M, Pelaez Mennendez-Riedl S, et al. (1989) Functional morphology of mountain plants. Flora 182(5): 353–383. DOI: 10.1078/0367-2530-00128

    Article  Google Scholar 

  • Kudo G, Molau U (1999) Variations in reproductive traits at inflorescence and flower levels of an arctic legume, Astragalus alpinus L.: comparisons between a subalpine and an alpine population. Plant Species Biology 14(3): 181–191. DOI: 10.1046/j.1442-1984.1999.00012.x

    Article  Google Scholar 

  • Liu Y, Reich PB, Li G, et al. (2011) Shifting phenology and abundance under experimental warming alters trophic relationships and plant reproductive capacity. Ecology 92(6): 1201–1207. DOI: 10.2307/23034991

    Article  Google Scholar 

  • Lortie CJ, Aarssen LW (1999) The specialization hypothesis for phenotypic plasticity in plants. International Journal of Plant Sciences 157(4): 484–487. DOI: 10.1086/297365

    Article  Google Scholar 

  • Méndez M, Traveset A (2003) Sexual allocation in singleflowered hermaphroditic individuals in relation to plant and flower size. Oecologia 137(1): 69–75. DOI: 10.1007/s00442-003-1319-z

    Article  Google Scholar 

  • Mani MS (1962). Introduction to high altitude Entomology insect life above the timber-line in the north-west Himalaya. Methuen, London. pp 12–50

    Google Scholar 

  • McIntosh ME (2002) Plant size, breeding system, and limits to reproductive success in two sister species of Ferocactus (Cactaceae). Plant Ecology 162(2): 273–288. DOI: 10.1023/A:1020329718917

    Article  Google Scholar 

  • Molau U (1993) Relationships between flowering phenology and life history strategies in tundra plants. Arctic and Alpine Research 25(4): 391–402. DOI: 10.2307/1551922

    Article  Google Scholar 

  • Pickering C (1997) Reproductive strategies and constraints of alpine plants as illustrated by five species of Australian alpine Ranunculus. Opera Botanica 132: 101–108.

    Google Scholar 

  • Pickering CM (1994) Size-dependent reproduction in Australian alpine Ranunculus. Australian journal of ecology 19: 336–344. DOI: 10.1111/j.1442-9993.1994.tb00497.x

    Article  Google Scholar 

  • Reekie EG (1998) An explanation for size-dependent reproductive allocation in Plantago major. Canadian Journal of Botany 76(1): 43–50. DOI: 10.1139/b97-160

    Article  Google Scholar 

  • Roderick M, Berry SL, Noble I (2000) A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves. Functional Ecology 14(4): 423–437. DOI: 10.1046/j.1365-2435. 2000.00438.x

    Article  Google Scholar 

  • Stöcklin J (1992) Umwelt, morphologie und wachstumsmuster klonaler pflanzen: eine übersicht. Botanica Helvetica 102: 3–21. DOI: 10.5169/seals-70923

    Google Scholar 

  • Sugiyama S, Bazzaz F (1998) Size dependence of reproductive allocation: the influence of resource availability, competition and genetic identity. Functional Ecology 12(2): 280–288. DOI: 10.1046/j.1365-2435.1998.00187.x

    Article  Google Scholar 

  • Totland Ø, Eide W (1999) Environmentally-dependent pollen limitation on seed production in alpine Ranunculus acris. Ecoscience 6(2): 173–179. DOI: 10.1080/11956860.1999. 11682518

    Article  Google Scholar 

  • Vamosi SM, Queenborough SA (2010) Breeding systems and phylogenetic diversity of seed plants along a large-scale elevational gradient. Journal of Biogeography 37(3): 465–476. DOI: 10.1111/j.1365-2699.2009.02214.x

    Article  Google Scholar 

  • Wagner J, Steinacher G, Ladinig U (2010) Ranunculus glacialis L.: successful reproduction at the altitudinal limits of higher plant life. Protoplasma 243(1–4): 117–128. DOI: 10.1007/s00709-009-0104-1

    Article  Google Scholar 

  • Wang M, Liu G, Jin T, et al. (2017) Age-related changes of leaf traits and stoichiometry in an alpine shrub (Rhododendron agglutinatum) along altitudinal gradient. Journal of Mountain Science 14(1): 106–118. DOI: 10.1007/s11629-016-4096-y

    Article  Google Scholar 

  • Wang J, Shi F, Xu B, et al. (2014) Uptake and recovery of soil nitrogen by bryophytes and vascular plants in an alpine meadow. Journal of Mountain Science 11(2): 475–484. DOI: 10.1007/s11629-013-2707-4

    Article  Google Scholar 

  • Wang Y, Zhang D, Renner SS, et al. (2004) Botany: a new selfpollination mechanism. Nature 431(7004): 39–40. DOI: 10.1038/431039b

    Article  Google Scholar 

  • Valladares F, Wright SJ, Lasso E, et al. (2000) Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology 81(7): 1925–1936. DOI: 10.1890/0012-9658(2000)081[1925:pprtlo]2.0.co;2

    Article  Google Scholar 

  • Zhao Z, Du G, Zhou X, et al. (2006) Variations with altitude in reproductive traits and resource allocation of three Tibetan species of Ranunculaceae. Australian Journal of Botany 54(7): 691–700. DOI: 10.1071/BT05015

    Article  Google Scholar 

Download references

Acknowledgment

This study was sponsored by the National Natural Science Foundation (Grant No.313705594, 31400389), China Postdoctoral Science Foundation under Grant (2014M552385), and the International Science & Technology Cooperation Program of China (Grant No. 2013DFR90670).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-niu Wang or Yan Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Jd., Xue, Jy., Gao, J. et al. Adaptations of the floral characteristics and biomass allocation patterns of Gentiana hexaphylla to the altitudinal gradient of the eastern Qinghai-Tibet Plateau. J. Mt. Sci. 14, 1563–1576 (2017). https://doi.org/10.1007/s11629-017-4424-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-017-4424-x

Keywords

Navigation