Skip to main content
Log in

Effects of medium components and light on callus induction, growth, and frond regeneration in Lemna gibba (Duckweed)

  • Developmental Biology/Morphogenesis
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Basal media, plant growth regulator type and concentration, sucrose, and light were examined for their effects on duckweed (Lemna gibba) frond proliferation, callus induction and growth, and frond regeneration. Murashige and Skoog medium proved best for callus induction and growth, while Schenk and Hildebrandt medium proved best for frond proliferation. The ability of auxin to induce callus was associated with the relative strength of the four auxins tested, with 20 or 50 µM 2,4-dichlorophenoxyacetic acid giving the highest frequency (10%) of fronds producing callus. Auxin combinations did not improve callus induction frequency. Auxin in combination with other plant growth regulators was needed for long-term callus growth; the two superior plant growth regulator combinations were 10 µM naphthaleneacetic acid, 10 µM gibberellic acid, and 2 µM benzyladenine with either 1 or 20 µM 2,4-dichlorophenoxyacetic acid. Three percent sucrose was best for callus induction and growth. Callus induction and growth required light. Callus that proliferated from each frond’s meristematic zone contained a mixture of dedifferentiated and somewhat organized cell masses. Continual callus selection was required to produce mostly dedifferentiated, slow-growing callus cell lines. Frond regeneration occurred on Schenk and Hildebrandt medium without plant growth regulators but was promoted by 1 µM benzyladenine. Callus maintained its ability to regenerate fronds for at least 10 mo. Regenerated fronds showed a slower growth rate than normal fronds and a low percentage of abnormal morphologies that reverted to normal after one or two subcultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adda, S.; Reddy, T. P.; Kavi Kishor, P. B. Somatic embryogenesis and organogenesis in Guitzotia abyssinica. In Vitro Cell. Dev. Biol. 30P:104–107; 1994.

    CAS  Google Scholar 

  • Ahloowalia, B. S. Forage grasses. In: Ammirato, P. V.; Evans, D. A.; Sharp, W. R., et al. eds. Handbook of plant cell culture. Volume 3. New York: Macmillan Publishing Co.; 1984:91–125.

    Google Scholar 

  • Ashby, E.; Wangermann, E.; Winter, E. J. Studies in the morphogenesis of leaves. III. Preliminary observations on vegetative growth in Lemna minor. New Phytol. 49:374–381; 1948.

    Google Scholar 

  • ASTM, American Society for Testing Materials. Standard guide for conducting static toxicity tests with Lemna gibba G3.E1415-91. ASTM Annual Book of Standards. Volume 11.04. Philadelphia, PA. 1991.

  • Chang, W. C.; Chiu, P. L. Induction of callus from fronds of duckweed (Lemna gibba L.). Bot. Bull. Academia Sinica 17:106–109; 1976.

    Google Scholar 

  • Chang, W. C.; Chiu, P. L. Regeneration of Lemna gibba G3 through callus culture. Z. Pflanzenphysiol. Bd. 89.S:91–94; 1978.

    CAS  Google Scholar 

  • Chang, W. C.; Hsing, Y. I. Callus formation and regeneration of frond-like structures in Lemna perpusilla 6746 on a defined medium. Plant Sci. Lett. 13:133–136; 1978.

    Article  Google Scholar 

  • Crawford, D. J.; Landolt, E. Allozymic studies in Spirodela (Lemnaceae): variation among conspecific clones and divergence among species. Syst. Bot. 10:389–394; 1993.

    Article  Google Scholar 

  • Crombie, L.; Heavers, A. D. Synthesis of an allelopathic cyclopentenone from Lemna trisulca. J. Chem. Soc. Perkin Trans. 1:2685–2687; 1992.

    Google Scholar 

  • Cui, Y. B.; Chen, S. L.; Wang, S. M. Effect of ration size on the growth and energy budget of the grass carp, Ctenopharyngodon idella Val. Aquaculture 123:95–107; 1994.

    Article  Google Scholar 

  • Dewanji, A. Amino acid composition of leaf proteins extracted from some aquatic weeds. J. Agric. Food Chem. 41:1232–1236; 1993.

    Article  CAS  Google Scholar 

  • Gamborg, O. L.; Miller, R. A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151–158; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Haustein, A. T.; Gilman, R. H.; Skillicorn, P. W., et al. Performance of broiler chickens fed diets containing duckweed (Lemna gibba). J. Agric. Sci. 122:285–289; 1994.

    Google Scholar 

  • Holst, R. W.; Ellwanger, T. C. Pesticide assessment guidelines, subdivision J hazard evaluation: nontarget plant. EPA-540/9-82- 020; Washington, DC: Government Printing Office; 1982.

    Google Scholar 

  • Jenner, H. A.; Janssen-Mommen, J. P. M. Duckweed Lemna minor as a tool for testing toxicity of coal residues and polluted sediments. Archives Environ. Contam. Toxicol. 25:3–11; 1993.

    CAS  Google Scholar 

  • Kaihara, S.; Takimoto, A. A flower-inducing substance derived from norepinephrine upon contact with intact Lemna plants. Plant Cell Physiol. 32:1107–1109; 1991.

    CAS  Google Scholar 

  • Landolt, E.; Kandeler, R. The family of Lemnaceae, a monographic study. Volume 2 of the monograph: phytochemistry; physiology; application; bibliography. Zurich, Switzerland: Veroffentlichungen des Geobotanischen Institutes ETH, Stiftung Ruebel; 1987.

    Google Scholar 

  • McClure, J. W.; Alston, R. E. A chemotaxonomic study of Lemnaceae. Am. J. Bot. 53:849–860; 1966.

    Article  PubMed  CAS  Google Scholar 

  • Mehta, U. J.; Hazra, S.; Mascarenhas, A. F. Somatic embryogenesis and in vitro flowering in Brassica nigra. In Vitro Cell. Dev. Biol. 29P:1–4; 1993.

    Google Scholar 

  • Mesmar, M. N.; Abussaud, M. The antibiotic activity of some aquatic plants and algal extracts from Jordan. Qatar Univ. Sci. J. 11:155–160; 1991.

    Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–496; 1962.

    Article  CAS  Google Scholar 

  • Nitsch, J. P.; Nitsch, C. Haploid plants from pollen grains. Science 163:85–87; 1969.

    Article  PubMed  Google Scholar 

  • Oron, G.; De-Vegt, A.; Porath, D. Nitrogen removal and conversion by duckweed grown on wastewater. Water Res. 22:179–184; 1988.

    Article  CAS  Google Scholar 

  • Rogers, S. M. D. Culture phenotype effects on regeneration capacity in the monocot Haworthia comptoniana. In Vitro Cell. Dev. Biol. 29P:9–12; 1993.

    Google Scholar 

  • Rokonuddin, A.; Kabirullah, M.; Khan, S. A., et al. Preparation of poultry feed for starters using duckweeds and mixed pulses. Bangladesh J. Sci. Ind. Res. 28:33–37; 1993.

    Google Scholar 

  • Schenk, R. U.; Hildebrandt, A. C. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50:199–204; 1972.

    CAS  Google Scholar 

  • Sharpe, W. R.; Evans, D. A.; Ammirato, P. V., et al., eds. Handbook of plant cell culture. Volume 2. Crop species. New York: Macmillan Publishing Co.; 1984:69–136.

    Google Scholar 

  • Silverthorne, J. Post-transcriptional regulation of organ-specific expression of individual rbcS mRNAs in Lemna gibba. Plant Cell 2:1181–1190; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Slovin, J. P.; Cohen, J. D. Levels of indole-3-acetic acid in Lemna gibba G3 and in a large Lemna mutant regenerated from tissue culture. Plant Physiol. 86:522–526; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Urbanska-Worytkiewicz, K. Cytological variation within the family of Lemnaceae. Veroff. Geobot. Inst. Eidg. Tech. Hochsch. Stift. Ruebel Zuer. 70:30–101; 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, H.K., Stomp, A.M. Effects of medium components and light on callus induction, growth, and frond regeneration in Lemna gibba (Duckweed). In Vitro Cell.Dev.Biol.-Plant 33, 20–25 (1997). https://doi.org/10.1007/s11627-997-0035-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-997-0035-5

Key words

Navigation