Skip to main content
Log in

A new initiative in micropropagation: airborne bacterial volatiles modulate organogenesis and antioxidant activity in tobacco (Nicotiana tabacum L.) callus

  • Micropropagation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The present study aims to analyze the effect of bacterial volatiles on tobacco callus organogenesis. A glass prototype was designed in the shape of the letter ‘H’ such that plants and bacteria could be grown in physically separated compartments while volatile compounds could still be exchanged. Volatiles from a beneficial bacterium, Bacillus badius M12, which showed growth promotion in Sesamum indicum (sesame), also induced organogenesis in tobacco callus. Volatiles from B. badius M12 appeared to maintain tobacco callus in a green and viable state during the prolonged, 45 d, sealed incubation. This apparent antioxidant effect was investigated by exposing freshly cut cylinders of apple flesh, a tissue noted for its ready tendency to oxidize, to bacterial volatiles. The expression of superoxide dismutase (SOD), a key antioxidant enzyme, was higher in callus exposed to bacterial volatiles, confirming that they enhanced antioxidant activity. Exposure of apple tissues to volatile compounds from B. badius M12 and a well-known growth-promoting bacterial volatile, 2,3-butanediol, led to increased antioxidant activity. We conclude that plant growth-promoting bacterial volatiles were useful in tissue organogenesis and increased antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Alstrom S, Burns RG (1989) Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol Fertil Soils 7:232–238

    Article  Google Scholar 

  • Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas SPP-mediated plant growth-stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (2002) Plant growth-promoting bacteria: a potential tool for arid mangrove reforestation. Trees 16:159–166

    Article  CAS  Google Scholar 

  • Beauchump C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:275–287

    Google Scholar 

  • Bedigian D, Harlan J (1986) Evidence for cultivation of sesame in the ancient world. Econ Bot 40:137–154

    Article  Google Scholar 

  • Benson EE (2000) Do free radicals have a role in plant tissue culture recalcitrance? In Vitro Cell Dev Plant 36:163–170

    Article  CAS  Google Scholar 

  • Blom D, Fabbri C, Eberl L, Weisskopf L (2011) Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Appl Environ Microbiol 77:1000–1008. doi:10.1128/AEM.01968-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bray HG, Thorpe WV (1954) Analysis of phenolic compounds of interest in metabolism. Methods Biochem Anal 1:27–52

    Article  CAS  PubMed  Google Scholar 

  • Chanjirakul K, Wang SY, Wang CY, Siriphanich J (2006) Effect of natural volatile compounds on antioxidant capacity and antioxidant enzymes in raspberries. Postharvest Biol Technol 40:106–115. doi:10.1016/j.postharvbio.2006.01.004

    Article  CAS  Google Scholar 

  • Chanjirakul K, Wang SY, Wang CY, Siriphanich J (2007) Natural volatile treatments increase free-radical scavenging capacity of strawberries and blackberries. J Sci Food Agric 87:1463–1472. doi:10.1002/jsfa

    Article  CAS  Google Scholar 

  • Cheung SCM, Szeto YT, Benzie IFF (2007) Antioxidant protection of edible oils. Plant Food Hum Nutr 62:39–42

    Article  CAS  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park J-Y, Lee Y-H, Cho BH, Yang K-Y, Ryu C-M, Kim YC (2008) 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microbe Interact 21:1067–1075. doi:10.1094/MPMI-21-8-1067

    Article  CAS  PubMed  Google Scholar 

  • Dan Y (2008) Biological functions of antioxidants in plant transformation. In Vitro Cell Dev Plant 44:149–161. doi:10.1007/s11627-008-9110-9

    Article  CAS  Google Scholar 

  • Digiacomo F, Girelli G, Aor B, Marchioretti C, Pedrotti M, Perli T, Tonon E, Valentini V, Avi D, Ferrentino G, Dorigato A, Torre P, Jousson O, Mansy SS, Bianco CD (2014) Ethylene-producing bacteria that ripen fruit. ACS Synth Biol 3:935–938

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32

    Article  CAS  PubMed  Google Scholar 

  • Dunkel M, Schmidt U, Struck S, Berger L, Gruening B, Hossbach J, Jaeger IS, Effmert U, Piechulla B, Eriksson R, Knudsen J, Preissner R (2009) Super scent—a database of flavors and scents. Nucleic Acids Res 37:D291–D294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farag MA, Ryu C-M, Sumner LW, Paré PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochem 67:2262–2268

    Article  CAS  Google Scholar 

  • Foyer CH, Descourvieres P, Kunert KJ (1994) Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ 17:507–523. doi:10.1111/j.1365-3040.1994.tb00146.x

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • He Y, Guo X, Lu R, Niu B, Pasapula V, Hou P, Cai F, Xu Y, Chen F (2009) Changes in morphology and biochemical indices in browning callus derived from Jatropha curcas hypocotyls. Plant Cell Tissue Org 98:11–7. doi:10.1007/s11240-009-9533-y

    Article  CAS  Google Scholar 

  • Holguin G, Vazquez P, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils 33:265–278

    Article  CAS  Google Scholar 

  • Ibarz A, Paga J, Garza S (2000) Kinetic models of non-enzymatic browning in apple puree. J Sci Food Agric 80:1162–1168

    Article  CAS  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–012

    Article  CAS  PubMed  Google Scholar 

  • Karadeniz A, Topcuoğlu ŞF, İnan S (2006) Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J Microbiol Biotechnol 22:1061–1064

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Ahemad M, Oves M (2009) Functional diversity among plant growth-promoting rhizobacteria: current status. Springer, Netherland

    Google Scholar 

  • Kim YC, Leveau J, Mcspadden Gardener BB, Pierson EA, Pierson LS III, C-m R (2011) The multifactorial basis for plant health promotion by plant-associated bacteria. Appl Environ Microbiol 77:1548–1555. doi:10.1128/AEM.01867-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307

    CAS  PubMed  Google Scholar 

  • Kloepper JW, Rodriguez-Kabana R, Zehnder GW, Murphy J, Sikora E, Fernandez C (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Aust J Plant Pathol 28:27–33

    Article  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathol 94:1259–1266

    Article  CAS  Google Scholar 

  • Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) mVOC: a database of microbial volatiles. Nucleic Acids Res 42:D744–D748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant-Microbe Interact 20:207–217

    Article  PubMed  Google Scholar 

  • McIlvain TC (1921) A buffer solution for colorimetric comparison. J Biol Chem 49:183–86

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Ozoglu H, Bayndrl A (2002) Inhibition of enzymic browning in cloudy apple juice with selected antibrowning agents. Food Control 13:213–221

    Article  CAS  Google Scholar 

  • Palanisami S, Prabaharan D, Uma L (2009) Fate of few pesticide-metabolizing enzymes in the marine cyanobacterium Phormidium valderianum BDU 20041 in perspective with chlorpyrifos exposure. Pestic Biochem Physiol 94:68–72

    Article  CAS  Google Scholar 

  • Pieterse CMJ, van Wees SCM, Ton J, van Pelt JA, van Loon LC (2002) Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol 4:535–544

    Article  CAS  Google Scholar 

  • Ravikumar S, Kathiresan K, Ignatiammal TM, Selvam MB, Shanty S (2004) Nitrogen-fixing azotobacters from mangrove habitat and their utility as marine biofertilizers. J Exp Mar Biol Ecol 312:5–7

    Article  CAS  Google Scholar 

  • Rudrappa T, Splaine RE, Biedrzycki ML, Bais HP (2008) Cyanogenic pseudomonads influence multitrophic interactions in the rhizosphere. PLoS One 3:e2073. doi:10.1371/journal.pone.0002073

    Article  PubMed Central  PubMed  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ryu C-M, Farag MA, Paré PW, Kloepper JW (2005) Invisible signals from the underground: bacterial volatiles elicit plant growth promotion and induced systemic resistance. Plant Pathol J 21:7–12

    Article  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  CAS  PubMed  Google Scholar 

  • Song GC, Ryu C-M (2013) Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int J Mol Sci 14:9803–9819

    Article  PubMed Central  PubMed  Google Scholar 

  • Sundararaman M, Boopathi T, Gopinath S (2007) Status of mangrove ecosystem: exploring the potential role of cyanobacteria in restoration and afforestation. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Netherland, pp 209–224

    Chapter  Google Scholar 

  • Tronc J-S, Lamarche F, Makhlouf J (1997) Enzymatic browning inhibition in cloudy apple juice by electrodialysis. J Food Sci 62:75–79

    Article  CAS  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468

    Article  CAS  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73:5639–5641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Chromium reduction, plant growth-promoting potentials, and metal solubilizatrion by Bacillus sp. isolated from alluvial soil. Curr Microbiol 54:237–243

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Qi X, Wang L, Zhang Y, Hua W, Li D, Lv H, Zhang X (2011) Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics 12:451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie X, Zhang H, Paré PW (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4:948–953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zacchini M, de Agazio M (2004) Spread of oxidative damage and antioxidative response through cell layers of tobacco callus after UV-C treatment. Plant Physiol Biochem 42:445–450. doi:10.1016/j.plaphy.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kim M-S, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 21:737–744. doi:10.1094/MPMI-21-6-0737

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research work was financially supported by the Ministry of Environment and Forests (MoEF), Govt. of India. We would like to thank Dr. T. Boopathi for his help during experiments and manuscript preparation. We are thankful to Dr. N. Jayabalan, Department of Plant Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India and his research students for providing plant seeds and for helping during callus preparation. Language editing by Dr. Carla A. Spence, Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA has greatly improvised our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthuraman Sundararaman.

Additional information

Editor: Ewen Mullins

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 10927 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopinath, S., Kumaran, K.S. & Sundararaman, M. A new initiative in micropropagation: airborne bacterial volatiles modulate organogenesis and antioxidant activity in tobacco (Nicotiana tabacum L.) callus. In Vitro Cell.Dev.Biol.-Plant 51, 514–523 (2015). https://doi.org/10.1007/s11627-015-9717-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-015-9717-6

Keywords

Navigation