Skip to main content
Log in

Induction of carotenoid pigments in callus cultures of Calendula officinalis L. in response to nitrogen and sucrose levels

  • Secondary Metabolism
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

In vitro carotenoid pigment production in callus cultures of Calendula officinalis L. was investigated using two basal media, semi-solid versus liquid media and varied concentrations of sucrose, ammonium, and nitrate nitrogen. Of the two explants that were evaluated, floret explants were best for callus induction using Murashige and Skoog (MS) medium supplemented with 2.0 mg l−1 2,4-dichlorophenoxyacetic acid under complete darkness. Carotenoid pigment induction was significantly augmented when the sucrose concentration was increased. Low sucrose concentrations in the culture medium deferred the onset of pigment induction and reduced the overall levels of carotenoid pigments produced. The highest amount of carotenoid pigments was observed when the callus was grown on the MS medium without ammonium nitrogen. The quantity of carotenoids was slightly elevated in cultures grown on semi-solid medium than those grown in liquid medium. In vitro carotenoid production was optimized by modifying the concentration of ammonium nitrogen to nitrate nitrogen in the culture medium and enhancing the sucrose concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Aksu Z.; Eren A. T. Carotenoids production by the yeast Rhodotorula mucilaginosa: use of agricultural wastes as a carbon source. Process Biochem 40: 2985–2991; 2005. doi:10.1016/j.procbio.2005.01.011.

    Article  CAS  Google Scholar 

  • Aksu Z.; Eren A. T. Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochem Eng J 35: 107–113; 2007. doi:10.1016/j.bej.2007.01.004.

    Article  CAS  Google Scholar 

  • Bartley G. E.; Scolnik P. A. Plant carotenoids: pigments for photoprotection, visual attraction, and human health. The Plant Cell 7: 1027–1038; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Botella-Pavía P.; Rodríguez-Concepión M. Carotenoid biotechnology in plants for nutritionally improved foods. Physiol Plant 126: 369–381; 2006. doi:10.1111/j.1399-3054.2005.00632.x.

    Article  Google Scholar 

  • Britton G. Overview of carotenoid biosynthesis. In: Britton G.; Liaaen Jensen S.; Pfander H. (eds) Carotenoid. Birkhauser, Basel, pp 13–147; 1998.

    Google Scholar 

  • Earle F. R.; Mikolajczak K. L.; Wolff I. A.; Barclay A. S. Search for new industrial oils. X. Seed oils of the Calenduleae. J Amer Oil Chem Soc 41: 345–347; 1964. doi:10.1007/BF02654810.

    Article  CAS  Google Scholar 

  • Fraser P. D.; Bramley P. M. The biosynthesis and nutritional uses of carotenoid. Prog Lipid Res 43: 228–265; 2004. doi:10.1016/j.plipres.2003.10.002.

    Article  PubMed  CAS  Google Scholar 

  • Gazim Z. C.; Rezende C. M.; Fraga S. R.; Svidzinski T. I. E.; Cortez D. A. G. Antifungal activity of the essential oil from Calendula officinalis L. (Asteraceae) growing in Brazil. Brazilian J Microbiol 39: 61–63; 2008.

    Article  Google Scholar 

  • George P. S.; Ravishankar G. A. Induction of crocin and crocetins in callus cultures of Gardenia jasminoides Ellis. Food Biotechnol 9: 29–38; 1995. doi:10.1080/08905439509549883.

    Article  CAS  Google Scholar 

  • Giuliano G.; Tavazza R.; Diretto G.; Beyer P.; Taylor M. A. Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol 26: 139–145; 2008. doi:10.1016/j.tibtech.2007.12.003.

    Article  PubMed  CAS  Google Scholar 

  • Gomez K. A.; Gomez A. A. Statistical procedures for agricultural research. 2nd ed. Wiley, New York; 1984.

    Google Scholar 

  • Grzelak A.; Janiszowska W. Initiation and growth characteristics of suspension cultures of Calendula officinalis cells. Plant Cell Tiss Org Cult 71: 29–40; 2002.

    Article  CAS  Google Scholar 

  • Hussein G.; Sankawa U.; Goto H.; Matsumoto K.; Watanabe H. Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69: 443–449; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Jayaraj J.; Punja Z. K. Transgenic carrot plants accumulating ketocarotenoids show tolerance to UV and oxidative stresses. Plant Physiol Biochem 46: 875–883; 2008. doi:10.1016/j.plaphy.2008.05.015.

    Article  PubMed  CAS  Google Scholar 

  • Jegadeeswari V.; Indurani C.; Kalaiselvi T. Calendula: “the poor man’s saffron”. Science Tech Entrepreneur. Tamil Nadu Agricultural University, Coimbatore; 2007.

    Google Scholar 

  • Just B. J.; Santos C. A. F.; Fonseca M. E. N.; Boiteux L. S.; Oloizia B. B.; Simon P. W. Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequence-characterization, single nucleotide polymorphism (SNP) markers and genome mapping. Theor Appl Genet 114: 693–704; 2007. doi:10.1007/s00122-006-0469-x.

    Article  PubMed  CAS  Google Scholar 

  • Landrum J. T.; Bone R. A. Dietary lutein and zeaxanthin: reducing the risk for macular degeneration. Agro Food Industry Hi-Tech 15: 22–25; 2004.

    CAS  Google Scholar 

  • Li L.; Lu S.; Cosman K. M.; Earle E. D.; Garvin D. F.; O’Neill J. β-Carotene accumulation induced by the cauliflower Or gene is not due to an increased capacity of biosynthesis. Phytochem 67: 1177–1184; 2006. doi:10.1016/j.phytochem.2006.05.013.

    Article  CAS  Google Scholar 

  • Liu B. H.; Lee Y. K. Secondary carotenoids formation by the green alga Chlorococcum sp. J Appl Phycol 12: 301–307; 2000.

    Article  CAS  Google Scholar 

  • Lu S.; Li L. Carotenoid metabolism: biosynthesis, regulation, and beyond. J Integrative Plant Biol 50: 778–785; 2008.

    Article  CAS  Google Scholar 

  • Makunga N. P.; van Staden J.; Cress W. A. The effect of light and 2,4-D on anthocyanin production in Oxalis reclinata callus. Plant Growth Reg 23: 153–158; 1997.

    Article  CAS  Google Scholar 

  • Matkowski A. Plant in vitro culture for the production of antioxidants—a review. Biotech Adv 26: 548–560; 2008. doi:10.1016/j.biotechadv.2008.07.001.

    Article  CAS  Google Scholar 

  • Mizukami H.; Tomita K.; Ohashi H.; Hiraoka N. Anthocyanin production in callus cultures of roselle (Hibiscus sabdariffa L.). Plant Cell Rep 7: 553–556; 1988.

    Article  CAS  Google Scholar 

  • Mok M. C.; Gabelman W. H.; Skoog F. Carotenoid synthesis in tissue cultures of Daucus carota L. J Am Soc Hortic Sci 101: 442–449; 1976.

    CAS  Google Scholar 

  • Mukherjee S. K.; Rathinasabapathi B.; Gupta N. Low sugar and osmotic requirements for shoot regeneration from leaf pieces of Solanum melongena L. Plant Cell Tiss Org Cult 25: 13–16; 1991. doi:10.1007/BF00033906.

    Article  CAS  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497; 1962. doi:10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  • Nakagawa K.; Fukui H.; Tabata M. Hormonal regulation of berberine production in cell suspension cultures of Thalictrum minus. Plant Cell Rep 5: 69–71; 1986. doi:10.1007/BF00269722.

    Article  CAS  Google Scholar 

  • Papaioannou E. H.; Liakopoulou-Kyriakides M. Substrate contribution on carotenoid production in Blakeslea trispora cultivations. Food Bioprod Process 88: 305–311; 2010. doi:10.1016/j.fbp.2009.03.001.

    Article  CAS  Google Scholar 

  • Parajó J. C.; Santos V.; Vázquez M. Optimization of carotenoid production by Phaffia rhodozyma cells grown on xylose. Process Biochem 33: 181–187; 1998. doi:10.1016/S0032-9592(97)00045-9.

    Article  Google Scholar 

  • Ranganna S. Handbook of analysis and quality control for fruit and vegetable products. 2nd ed. Tata McGraw-Hill, New Delhi, pp 83–104; 1996.

    Google Scholar 

  • Rao S. R.; Ravishankar G. A. Plant cell cultures: chemical factories of secondary metabolites. Biotech Adv 20: 101–153; 2002. doi:10.1016/S0734-9750(02)00007-1.

    Article  CAS  Google Scholar 

  • Sandmann G.; Römer S.; Fraser P. D. Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants—mini review. Metabolic Eng 8: 291–302; 2006. doi:10.1016/j.ymben.2006.01.005.

    Article  CAS  Google Scholar 

  • Shimizu K.; Kikuchi T.; Sugano N.; Nishi A. Carotenoid and steroid syntheses by carrot cells in suspension culture. Physiol Plant 46: 127–132; 2006. doi:10.1111/j.1399-3054.1979.tb06544.x.

    Article  Google Scholar 

  • Snedecor G. W.; Cochran W. G. Statistical methods. 6th ed. Iowa State University Press, Ames; 1967.

    Google Scholar 

  • Solovchenko A. E.; Khozin-Goldberg I.; Didi-Cohen S.; Cohen Z.; Merzlyak M. N. Effects of light and nitrogen starvation on the content and composition of carotenoids of the green microalga Parietochloris incisa. Russian J Plant Physiol 55: 455–462; 2008. doi:10.1134/S1021443708040043.

    Article  CAS  Google Scholar 

  • Somashekar D.; Joseph R. Inverse relationship between carotenoid and lipid formation in Rhodotorula gracilis according to the C/N ratio of the growth medium. World J Microbiol Biotech 16: 491–493; 2000. doi:10.1023/A:1008917612616.

    Article  CAS  Google Scholar 

  • Sugano N.; Miya S.; Nishi A. Carotenoid synthesis in a suspension culture of carrot cells. Plant Cell Physiol 12: 525–531; 1971.

    CAS  Google Scholar 

  • Télef N.; Stammitti-Bert L.; Mortain-Bertrand A.; Maucourt M.; Carde J. P.; Rolin D.; Gallusci P. Sucrose deficiency delays lycopene accumulation in tomato fruit pericarp discs. Plant Mol Biol 62: 453–469; 2006. doi:10.1007/s11103-006-9033-y.

    Article  PubMed  Google Scholar 

  • Valduga E.; Valério A.; Treichel H.; Júnior A. F.; Luccio M. D. Optimization of the production of total carotenoids by Sporidiobolus salmonicolor (CBS 2636) using response surface technique. Food Bioprocess Technol 2: 415–421; 2009. doi:10.1007/s11947-008-0066-x.

    Article  CAS  Google Scholar 

  • Yamamoto Y.; Kinoshita Y.; Watanabe S.; Yamada Y. Anthocyanin production in suspension cultures of high-producing cells of Euphorbia millii. Agric Biol Chem 53: 417–423; 1989.

    Article  CAS  Google Scholar 

  • Yun J. W.; Kim J. H.; Yoo Y. J. Optimizations of carotenoid biosynthesis by controlling sucrose concentration. Biotech Lett 12: 905–910; 1990. doi:10.1007/BF01022588.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MRL acknowledges the grant of Junior Research Fellowship from the Indian Council of Agricultural Research, New Delhi. The author thanks Dr. V. Paul, Division of Plant Physiology, IARI for extending his research facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Prasad.

Additional information

Editor: J. Finer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legha, M.R., Prasad, K.V., Singh, S.K. et al. Induction of carotenoid pigments in callus cultures of Calendula officinalis L. in response to nitrogen and sucrose levels. In Vitro Cell.Dev.Biol.-Plant 48, 99–106 (2012). https://doi.org/10.1007/s11627-011-9402-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-011-9402-3

Keywords

Navigation