Skip to main content
Log in

High efficiency in vitro plant regeneration from epicotyl explants of Ponkan Mandarin (Citrus reticulata Blanco)

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Ponkan mandarin (Citrus reticulata Blanco) is one of the most important commercial cultivars of mandarin orange in China. This study reports an improved and efficient protocol for in vitro plant regeneration of Ponkan mandarin. Epicotyl segments, which were cut longitudinally into two halves, were used as explants. The shoot regeneration frequency was significantly increased by longitudinal cutting. A 100% shoot regeneration frequency and 13.2 shoots per explant were obtained when cultures were maintained in darkness for 20 d before being transferred to light conditions, with bud induction by indirect organogenesis. A 72.5% shoot regeneration frequency and 7.8 shoots per explant were obtained when explants were incubated under a 16-h light photoperiod continuously with buds differentiating directly from the cutting wound surface. The optimal medium for shoot formation was Murashige and Tucker basal medium supplemented with 2 mgL−1 BA and 30 gL−1 sucrose both under light conditions. The addition of the auxin NAA reduced the frequency of regeneration. A “filter-paper bridge” technique was used for rooting in this study. The basal portion of regenerated shoots was dipped into 1,000 mgL−1 IBA solution for 15 min before placement on a filter-paper bridge that was maintained in 1/2 MS liquid medium supplemented with 10 gL−1 sucrose. Eighty percent of the shoots rooted, and an average of 2.0 roots per shoot were achieved. Survival rate through acclimatization was 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

References

  • Almeida W. A. B.; Mourao-Filho F. A. A.; Pino L. E.; Boscariol R. L.; Rodriguez A. P. M.; Mendes B. M. J. Genetic transformation and plant recovery from mature tissues of Citrus sinensis L. Osbeck. Plant Sci 164: 203–211; 2003.

    Article  CAS  Google Scholar 

  • Boscariol R. L. W.; Almeida A. B. The use of the PMI/mannose selection system to recover transgenic sweet orange plants (Citrus sinensis L. Osbeck). Plant Cell Rep 22: 122–128; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Cervera M.; Pina J.; Juárez J.; Navarro A.; Navarro L.; Peña L. Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Rep 18: 271–278; 1998.

    Article  CAS  Google Scholar 

  • de Oliveira M. L.; Febres V. J.; Costa M. G.; Moore G. A.; Otoni W. C. High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration. Plant Cell Rep 28: 387–395; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Dominguez A.; Guerri J.; Cambra M.; Navarro L.; Moreno P.; Pena L. Efficient production of transgenic citrus plants expressing of the coat protein gene of Citrus tristeza virus. Plant Cell Rep 19: 427–433; 2000.

    Article  CAS  Google Scholar 

  • Edriss M. H.; Burger D. W. In vitro propagation of Troyer citrange from epicotyl segments. Sci Hort 23: 159–162; 1984.

    Article  CAS  Google Scholar 

  • Garcia-Luis A.; Bordony Y.; Moreira-Dias J. M.; Molina R. V.; Guardiola J. L. Explant orientation and polarity determine the morphogenic response of epicotyl segments of troyer citrange. Ann Bot 84: 715–723; 1999.

    Article  Google Scholar 

  • Ghorbel R.; Dominguez A.; Navarro L.; Pena L. Efficiency genetic transformation of sour orange (Citrus aurantium L.) and production of transgenic trees containing the coat protein gene of Citrus tristeza virus. Tree Physiol 20: 1183–1189; 2000.

    PubMed  Google Scholar 

  • Ghorbel R.; Navarro L.; Durán-Vila N. Morphogenesis and regeneration of whole plants of grapefruit (Citrus paradisi), sour orange (C. aurantium) and alemow (C. macrophylla). J Hort Sci Biotech 73: 323–327; 1998.

    Google Scholar 

  • Gutiérrez-E M. A.; Luth D.; Moore G. A. Factors affecting Agrobacterium-mediated transformation in Citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of Citrus tristeza virus. Plant Cell Rep 16: 745–753; 1997.

    Article  Google Scholar 

  • Huang J. Q.; Wu Zh R.; Sun Zh H. Several physiological factors influencing adventitious bud regeneration from the epicotyls of Ponkan (Citrus reticulata Blanco). Plant Physiol Communication 41(1): 37–40; 2005. In Chinese.

    CAS  Google Scholar 

  • Kaneyoshi J.; Kobayashi S.; Nakamura Y.; Shigemoto N.; Doi Y. A simple and efficient gene transfer system of trifoliate orange (Poncirus trifoliata Raf.). Plant Cell Rep 13: 541–545; 1994.

    CAS  Google Scholar 

  • Kayim M.; Ceccardi T. L.; Berretta M. J. G.; Barthe G. A.; Derrick K. S. Introduction of a citrus blight-associated gene into Carrizo citrange [C. sinensis (L.) Osbc. X Poncirus trifoliata (L.) Raf.] by Agrobacterium-mediated transformation. Plant Cell Rep 23: 377–385; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Khawale R. N.; Singh S. K.; Garg G.; Baranwal V. K.; Alizadeh S. A. Agrobacterium-mediated genetic transformation of Nagpur mandarin (Citrus reticulata Blanco). Curr Sci 91(12): 1700–1705; 2006.

    CAS  Google Scholar 

  • Li D. D.; Shi W.; Deng X. X. Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimeric ribonuclease gene. Plant Cell Rep 21: 153–156; 2002.

    Article  CAS  Google Scholar 

  • Maggon R.; Singh B. D. Promotion of adventitious bud regeneration by ABA in combination with BAP in epicotyl and hypocotyl explants of sweet orange (Citrus sinensis L. Osbeck). Sci Hort 63: 123–128; 1995.

    Article  CAS  Google Scholar 

  • Moore G. A.; Jacono C. C.; Neidigh J. L.; Lawrence S. D.; Cline K. Agrobacterium-mediated transformation of Citrus stem explants and regeneration of transgenic plants. Plant Cell Rep 11: 238–242; 1992.

    Article  CAS  Google Scholar 

  • Moreira-Dias J. M.; Molina R. V.; Bordõn Y. J. L.; Guardiola J. L.; Garcîa-Luis A. Direct and indirect shoot organogenic pathways in epicotyl cuttings of Troyer Citrange differ in hormone requirements and in their response to light. Ann Bot 85: 103–110; 2000.

    Article  CAS  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15: 473–479; 1962.

    Article  CAS  Google Scholar 

  • Murashige T.; Tucker D. P. H. Growth factor requirements of citrus tissue culture. Proc First Int Citrus Symp 3: 1155–1161; 1969.

    CAS  Google Scholar 

  • Peña L.; Cervera M.; Juárez J.; Navarro A.; Pina J. A.; Durán-Vila N.; Navarro L. Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep 14: 616–619; 1995.

    Article  Google Scholar 

  • Peña L.; Martín-Trillo M.; Juárez J.; Pina J. A.; Navarro L.; Martinez-Zapater J. M. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nature Biotech 19(3): 263–267; 2001.

    Article  Google Scholar 

  • Peña L. A.; Peãrez R.; Cervera M.; Jose Â. A.; Juaã R. Navarro L. Early events in Agrobacterium-mediated genetic transformation of citrus explants. Ann Bot 94: 67–74; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Molphe-Balch E.; Ochoa-Alejo N. In vitro plant regeneration of Mexican lime and mandarin by direct organogenesis. Hortsci 32(5): 931–934; 1997.

    Google Scholar 

  • Sim G. E.; Goh C. J.; Loh C. S. Micropropagation of Citrus mitis Blanco. Multiple bud formation from shoot and root explants in the presence of 6-benzylaminopurine. Plant Sci 59: 203–210; 1989.

    Article  CAS  Google Scholar 

  • Shen Z. M. Present conditions and development of Ponkan in China. Friend of Fruit Planter 7: 8–9; 2006. In Chinese.

    Google Scholar 

  • Vardi A.; Bleichman S.; Aviv D. Genetic transformation of citrus protoplasts and regeneration of transgenic plants. Plant Sci 69: 199–206; 1990.

    Article  CAS  Google Scholar 

  • Yang Z. N.; Ingelbrecht I. L.; Louzada E.; Skaria M.; Mirkov T. E. Agrobacterium-mediated transformation of the commercially important grapefruit cultivar ‘Rio Red’ (Citrus paradisi Macf). Plant Cell Rep 19: 1203–1211; 2000.

    Article  CAS  Google Scholar 

  • Yu Ch H.; Huang Sh.; Chen Ch X.; Deng Zh A.; Ling P.; Gmitter F. J. J. Factors affecting Agrobacterium-mediated transformation and regeneration of sweet orange and citrange. Plant Cell Tiss Org Cult 71: 147–155; 2002.

    Article  CAS  Google Scholar 

  • Zeng L. H.; Xu H. F.; Wang H. Q.; Wu Sh H.; Zhu Y. X. Construction of plant expression vectors with PMI gene as selection marker and utilization in transformation of Citrus sinensis L. Osbeck. J Agri Biotech 16(5): 858–864; 2008. In Chinese.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihui Zeng.

Additional information

Editor by line N. J. Taylor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, L., Xu, H., Zeng, Y. et al. High efficiency in vitro plant regeneration from epicotyl explants of Ponkan Mandarin (Citrus reticulata Blanco). In Vitro Cell.Dev.Biol.-Plant 45, 559–564 (2009). https://doi.org/10.1007/s11627-009-9248-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-009-9248-0

Keywords

Navigation