Skip to main content

Advertisement

Log in

In vitro plant regeneration from quality protein maize (QPM)

  • Developmental Biology/Morphogenesis..
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Breeding efforts to obtain more nutritious maize materials aimed at alleviating dietary deficiencies in developing countries have resulted in an improved maize germplasm known as quality protein maize (QPM). Quality protein maize has higher contents of tryptophan, lysine, and leucine than common maize, but suffers from some major agronomic drawbacks found in common inbred maize lines, such as susceptibility to insect pests and fungal and bacterial diseases and herbicide sensitivity. The development of a reproducible and efficient protocol for tissue culture of QPM is expected to solve some of these deficiencies. In this work, we have evaluated different formulations for in vitro induction of morphogenic responses in three QPM lines developed by the International Maize and Wheat Improvement Center (CIMMYT): CML (CIMMYT maize line)-145, CML-176, and CML-186. Only CML-176 and CML-186 have proven to be responsive to the in vitro conditions considered in this work, with CML-176 showing the highest efficiency in regenerable callus formation and growth. N6C1 medium was found to be efficient for in vitro culture of QPM, whereas no plants could be regenerated by using MPC medium. From CML-176 embyogenic calli cultured on N6C1 medium, we were able to regenerate up to 0.3 plants per 500 mg fresh weight (FW) callus. Further modifications in this experimental protocol, including the replacement of 3,6-dichloro-o-anisic acid with 2,4-dichlorophenoxyacetic acid and modification of the N6C1 vitamin balance, significantly increased the regeneration response of the induced calli, with up to 16.8 and 9.3 plants recovered per 500 mg FW callus for CML-176 and CML-186, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Aguado-Santacruz, G.A.; Cabrera-Ponce, J.L.; Olalde-Portugal, V.; Sánchez-González, M.R.; Márquez-Guzmán, J.; Herrera-Estrella, L. Tissue culture and plant regeneration of blue grama grass, Bouteloua gracilis (H.B.K.) Lag. ex Steud. In Vitro Cell. Dev. Biol., Plant 37:182–189; 2001a.

    Article  CAS  Google Scholar 

  • Aguado-Santacruz, G.A.; Cabrera-Ponce, J.L.; Ramírez-Chávez, E.; Rascón-Cruz, Q.; Herrera-Estrella, L.; Olalde-Portugal, V. Establishment, characterization and plant regeneration from highly chlorophyllous embryogenic cell cultures of blue grama grass, Bouteloua gracilis (H.B.K.) Lag. ex. Steud. Plant Cell Rep. 20:131–136; 2001b.

  • Ahn, B.J.; Huang, F.H.; King, J.W. Regeneration of bermudagrass cultivars and evidence of somatic embryogenesis. Crop Sci. 27:594–597; 1987.

    Article  CAS  Google Scholar 

  • Armstrong, C.L. Regeneration of plants from somatic cells cultures: applications for in vitro genetic manipulation. In: Freeling, M.; Walbot, V., eds. The Maize Handbook. New York: Springer-Verlag; 1994:663–671.

  • Armstrong, C.L.; Green, C.E. Initiation of friable, embryogenic maize callus: the role of L-proline. In: Agronomy Abstracts of the 74th Annual Meeting of the American Society of Agronomy; 1982:89.

  • Armstrong, C.L.; Green, C.E. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta 164:207–214; 1985.

    Article  CAS  Google Scholar 

  • Bohorova, N.E.; Luna, B.; Briton, R.M.; Huerta, L.D.; Hoisington, D.A. Regeneration potential of tropical, and subtropical, midaltitude, and highland maize inbreds. Maydica 40:275–281; 1995.

    Google Scholar 

  • Bressani, R. Protein quality of high-lysine maize for humans. Cereal Foods World 36:806–811; 1991.

    Google Scholar 

  • Bressani, R. Nutritional value of high-lysine maize in humans. In: Mertz, E.T., ed. Quality Protein Maize. St. Paul: American Association of Cereal Chemists; 1992:205–225.

  • Carvalho, C.H.S.; Bohorova, N.; Bordallo, P.N.; Abreu, L.L.; Valicentle, F.H.; Bressan, W.; Paiva, E. Type II callus production and plant regeneration in tropical maize genotypes. Plant Cell Rep. 17:73–76; 1997.

    Article  CAS  Google Scholar 

  • Chu, C.C.; Wang, C.C.; Sun, S.C.; Hsu, C.; Yin, K.C.; Chu, C.Y.; Bi, F.Y. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. Sin. 18:659–668; 1975.

    Google Scholar 

  • CIMMYT. Maize inbred lines released by CIMMYT. A compilation of 424 CIMMYT maize lines (CMLs). CIMMYT First draft. Texcoco: CIMMYT; 1999.

  • Conger, B.V.; Novak, F.J.; Afza, R.; Erdelsky, K.E. Somatic embryogenesis from cultured leaf segments of Zea mays. Plant Cell Rep. 6:345–347; 1987.

    Article  Google Scholar 

  • Green, C.E. Somatic embryogenesis and plant regeneration from the friable callus of Zea mays. In: Fujiwara, A., ed. Plant Tissue Culture. Proceedings of the 5th International Congress Plant, Tissue and Cell Culture. Tokyo, Japan; 1982:107–108.

  • Green, C.E.; Phillips, R.L. Plant regeneration from tissue culture of maize. Crop Sci. 15: 417–421; 1975.

    Article  Google Scholar 

  • Green, C.E.; Phillips, R.L.; Kleese, R.A. Tissue cultures of maize (Zea mays L.): Initiation, maintenance, and organic growth factors. Crop Sci. 14:54–58; 1974.

    Article  CAS  Google Scholar 

  • Hamaker, B.R.; Rahmanifar, A. QPM and nutritional needs of children in poor communities. In: Larkins, B.A.; Mertz, E.T., eds. Quality Protein Maize: 1964–1994. Proceedings of the International Symposium on Quality Protein Maize. EMBRAPA/CNPMS. Sete Lagoas, MG, Brazil; 1994:27–39.

  • Hazel, C.B.; Klein, T.M.; Anis, M.; Wilde, H.D.; Parrot, W.A. Growth characteristics and transformability of soybean embryogenic cultures. Plant Cell Rep. 17:765–772; 1998.

    Article  CAS  Google Scholar 

  • Hrib, J.; Vookova, B.; Kormutak, A. Biochemical differences between normal callus and embryogenic suspensor mass of silver fir. Biol. Plant. 39:507–513; 1997.

    Article  CAS  Google Scholar 

  • Huang, X.Q.; Wei, Z.M. High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea mays L.). Plant Cell Rep. 22:793–800; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Lida, A.; Yamashita, T.; Yamada, Y.; Morikawa, H. Efficiency of particle-bombardment-mediated transformation is influenced by cell cycle stage in synchronized cultured cells of tobacco. Plant Physiol. 97:1585–1587; 1991.

    Google Scholar 

  • Lowe, K.; Taylor, D.B.; Ryan, P.K.; Paterson, E. Plant regeneration via organogenesis and embryogenesis in the maize inbred line B73. Plant Sci. 41:125–132; 1985.

    Article  Google Scholar 

  • Lu, C.; Vasil, I.K.; Ozias-Akins, P. Somatic embryogenesis in Zea mays L. Theor. Appl. Genet. 62:109–112; 1982.

    Article  Google Scholar 

  • Lu, C.; Vasil, V.; Vasil, I.K. Improved efficiency of somatic embryogenesis and plant regeneration in tissue cultures of maize (Zea mays L.). Theor. Appl. Genet. 66:285–289; 1983.

    Article  Google Scholar 

  • Mertz, E.T. Thirty years of opaque-2 maize. In: Larkins, B.A.; Mertz E.T., eds. Quality Protein Maize: 1964–1994. Proceedings of the International Symposium on Quality Protein Maize. EMBRAPA/CNPMS. Sete Lagoas, MG, Brazil; 1994:1–9.

  • Mertz, E.T.; Bates, L.S.; Nelson, O.E. Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145:279–280; 1964.

    Article  PubMed  CAS  Google Scholar 

  • Murashige, T.; Skoog, F.A. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Nelson, D.E.; Koukoumanos, M.; Bohnert, H.J. Myo-inositol-dependent sodium uptake in ice plant. Plant Physiol. 119:165–172; 1999.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor-Sánchez, A.; Cabrera-Ponce, J.L.; Valdez-Melara, M.; Téllez-Rodríguez, P.; Pons-Hernández, J.L.; Herrera-Estrella, L. Transgenic maize plants of tropical and subtropical genotypes obtained from calluses containing organogenic and embryogenic-like structures derived from shoot tips. Plant Cell Rep. 21:302–312; 2002.

    Article  CAS  Google Scholar 

  • O’Kennedy, M.M.; Burger, J.T.; Berger, D.K. Transformation of elite white maize using the particle inflow gun and detailed analysis of a low-copy integration event. Plant Cell Rep. 20:721–730; 2001.

    Article  CAS  Google Scholar 

  • Pareddy, D.R.; Petolino, J.F. Somatic embryogenesis and plant regeneration from immature inflorescences of several elite inbreds of maize. Plant Sci. 67:211–219; 1990.

    Article  Google Scholar 

  • Ray, D.S.; Ghosh, P.D. Somatic embryogenesis and plant regeneration from cultured leaf explants of Zea mays. Ann. Bot. 66:497–500; 1990.

    Google Scholar 

  • Rhodes, C.A.; Green, C.E.; Phillips R.L. Regenerable maize tissue cultures derived from immature tassels. Maize Genet. Coop. Newsl. 56:148–149; 1982.

    Google Scholar 

  • Rhodes, C.A.; Green, C.E.; Phillips, R.L. Factors affecting tissue culture initiation from maize tassels. Plant Sci. 46:225–232; 1986.

    Article  Google Scholar 

  • Rice, T.B.; Reid, R.K.; Gordon, P.N. Morphogenesis in field crops. In: Hughes, K.W.; Henke, R.; Constantin, M., eds. Propagation of Higher Plants Through Tissue Culture. Springfield: National Technical Information Service; 1978:262–277.

    Google Scholar 

  • Sachs, M.M.; Lorz, H.; Dennis, E.S.; Elizur, A.; Ferl, R.J.; Gerlach, W.L.; Pryor, A.J.; Peacock, W.J. Molecular genetic analysis of the maize anaerobic response. In: Sheridan, W., ed. Maize for Biological Research. Charlottesville: Plant Molecular Biology Association; 1982:139–144.

    Google Scholar 

  • Santos, M.A.; Torne, J.M.; Blanco, J.L. Methods of obtaining maize totipotent tissue. I. Seedling segments culture. Plant Sci. Lett. 33:309–315; 1984.

    Article  Google Scholar 

  • Segal, G.; Song, R.; Messing, J. A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics 165:387–397; 2003.

    PubMed  CAS  Google Scholar 

  • Songstad, D.; Duncan, D.; Widholm, J. Effect of 1-aminocyclopropane-1-carboxylic acid, silver nitrate, and norbornadiene on plant regeneration from maize callus cultures. Plant Cell Rep. 7:262–265; 1988.

    Article  CAS  Google Scholar 

  • Songstad, D.D.; Armstrong, C.L.; Peterson, W.L. Silver nitrate increases type II callus production from immature embryos of maize inbred B73 and its derivatives. Plant Cell Rep. 9:699–702; 1991.

    Article  CAS  Google Scholar 

  • Songstad, D.D.; Peterson, W.L.; Armstrong, C.L. Establishment of friable embryogenic (type II) callus from immature tassels of Zea mays (Poaceae). Am. J. Bot. 79:761–764; 1992.

    Article  Google Scholar 

  • Sozinov, A.; Lukjanjuk, S.; Ignatova, S. Anther cultivation and induction of haploid plants in triticale. Z. Pflanzenzücht. 86:272–285; 1981.

    CAS  Google Scholar 

  • Springer, W.D.; Green, C.E.; Kohn, K.A. A histological examination of tissue culture initiation from immature embryos of maize. Protoplasma 101:269–281; 1979.

    Article  Google Scholar 

  • Stuart, D.A.; Strickland, S.G. Somatic embryogenesis from cells cultures of Medicago sativa L. I. The role of amino acid additions to the regeneration medium. Plant Sci. Lett. 34:165–174; 1984a.

    Article  CAS  Google Scholar 

  • Stuart, D.A.; Strickland, S.G. Somatic embryogenesis from cells cultures of Medicago sativa L. II. The interaction of amino acids with ammonium. Plant Sci. Lett. 34:175–181; 1984b.

    Article  CAS  Google Scholar 

  • Suprasanna, P.; Rao, K.V.; Reddy, G.M. Plantlet regeneration from glume calli of maize (Zea mays L.). Theor. Appl. Genet. 72:120–122; 1986.

    Article  Google Scholar 

  • Ting, Y.C.; Yu, M.; Zheng, W.Z. Improved anther culture of maize. Plant Sci. Lett. 23:139–145; 1981.

    Article  Google Scholar 

  • Torne, J.M.; Santos, M.A.; Pons, A.; Blanco, M. Regeneration of plants from mesocotyl tissue cultures of immature embryos of Zea mays L. Plant Sci. Lett. 17:339–344; 1980.

    Article  CAS  Google Scholar 

  • Vain, P.; Flament, P.; Soudain, P. Role of ethylene in embryogenic callus initiation and regeneration in Zea mays L. J. Plant. Physiol. 135:537–540; 1989a.

    Google Scholar 

  • Vain, P.; Yean, H.; Flament, P. Enhancement of production and regeneration of embryogenic type II callus in Zea mays L. by AgNO3. Plant Cell Tiss. Org. Cult. 18:143–151; 1989b.

    Article  Google Scholar 

  • Vasil, I.K. Tissue cultures of maize. Maydica 50:361–365; 2005.

    Google Scholar 

  • Zar, J.H. Biostatistical analysis. Englewood Cliffs: Prentice-Hall; 1974.

    Google Scholar 

  • Zhang, S.; Williams-Carrier, R.; Lemaux, P.G. Transformation of recalcitrant maize elite inbreds using in vitro shoot meristematic cultures induced from germinated seedlings. Plant Cell Rep. 21:263–270; 2002.

    Article  CAS  Google Scholar 

  • Zhong, H.; Srinivasan, C.; Sticklen, M.B. In-vitro morphogenesis of corn (Zea mays L.). I. Differentiation of multiple shoot clumps and somatic embryos from shoots tips. Planta 187:483–489; 1992.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by funds from CONACyT-SAGARPA (project no. 2004-C01-17), Fondos Mixtos CONACyT-Guanajuato (project no. 06-24-A-033), and CONCyTEG (project no. 04-24-K117-042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Armando Aguado-Santacruz.

Additional information

Editor: P. Ozias-Akins

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguado-Santacruz, G.A., García-Moya, E., Aguilar-Acuña, J.L. et al. In vitro plant regeneration from quality protein maize (QPM). In Vitro Cell.Dev.Biol.-Plant 43, 215–224 (2007). https://doi.org/10.1007/s11627-007-9042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-007-9042-9

Keywords

Navigation