Skip to main content
Log in

Special symposium: In vitro plant recalcitrance transcript profiling: A tool to assess the development of conifer embryos

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Embryogenesis is a phase of development that has been understudied at the molecular level, especially in conifers. Somatic embryogenesis, the asexual propagation of embryos, provides insights into development and has major applications in the forestry industry. Loblolly pine is the most important commercial species in the United States; however, it is recalcitrant to somatic embryogenesis methods. An appreciation of gene expression and the development of ‘expression markers’ would allow us to follow conifer embryogenesis more closely and to gain some insight into the metabolic states of zygotic and somatic embryos. We have employed the techniques of differential display to identify genes whose mRNA abundance changes over the course of development. We have isolated around 500 cDNAs and propose the establishment of a database of transcript levels in somatic and zygotic pine embryos over the course of development using cDNA arrays. Approximately one-third of our cDNAs have similarity to sequences in the Genbank. Our intention is to gain insight into cell physiology and biochemistry by identifying inducible transcripts. This information will form the basis of testable hypotheses regarding manipulation of embryo development in tissue culture. Experiments deriving from transcript profiling will provide insight into development. The expression markers' will allow a classification system more closely tied to metabolic state and the integration of these data into ongoing physiological research will lead to improved protocols for somatic embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Attree, S. M.; Fowke, L. C. Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tiss. Org. Cult. 35:1–35; 1993.

    Article  CAS  Google Scholar 

  • Baker, J.; Steele, C.; Dure III, L. Sequence and characterization of 6 LEA proteins and their genes from cotton. Plant Mol. Biol. 11277–291; 1988.

    Article  CAS  Google Scholar 

  • Becwar, M.R.; Blush, T. D.; Brown, D. W.; Chesick, E. E. Multiple paternal genotypes in embryogenic tissue derived from individual immature loblolly pine seeds. Plant Cell Tiss. Org. Cult. 26:37–44; 1991.

    Article  Google Scholar 

  • Becwar, M. R.; Pullman, G. S. Somatic embryogenesis in loblolly pine (Pinus taeda L.). In: Mohan Jain, S.; Gupta, P. K.; Newton, R. J. eds. Gymnosperms (Somatic embryogenesis in woody plants Vol. 3). Dordrecht, The Netherlands: Kluwer Academic Publishers; 1995; 287–301.

    Google Scholar 

  • Behrendt, U.; Zoglauer, K. Boron controls suspensor development in embryogenic cultures of Larix decidua. Physiol. Plant 97:321–326; 1996.

    Article  CAS  Google Scholar 

  • Bouchez, D.; Hofte, H. Functional genomics in plants. Plant Physiol. 118:725–732; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Bray, E. A. Regulation of gene expression by endogenous ABA during drought stress. In: Davies, W. J.; Jones, H. G. eds. Abscisic acid: physiology and biochemistry. Oxford, UK: Bios Scientific Publishers Ltd.: 1990; 81–98.

    Google Scholar 

  • Cairney, J.; Xu, N.; Pullman, G. S.; Ciavatta, V. T.; Johns, B. Differential display: a tool to follow natural and somatic embryo development in loblolly pine. TAPPI Biol. Sci. Symp., 19–23 October 1997, San Francisco, CA. Atlanta, GA: TAPPI Press: 1997; 85–91.

    Google Scholar 

  • Cairney, J.; Xu, X.; Pullman, G. S.; Ciavatta, V. T.; Johns, B. Natural and somatic embryo development in loblolly pine: gene expression studies using differential display and DNA arrays. Appl. Biochem. Biotechnol. 77–79:5–17; 1999.

    Article  Google Scholar 

  • Cionini, P. G. The suspensor and its role in embryo development in Phaseolus (Papilionaceae): A review. Atti Soc. Toxc. Sci. Nat. Mem., Ser. B 94:151–161; 1987.

    Google Scholar 

  • Desprez, T.; Amselem, J.; Caboche, M.; Höfte, H. Differential gene expression in Arabidopsis monitored using cDNA arrays. Plant J. 14:643–652; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Dong, J-Z.; Dunstan, D. I. Expression of abundant mRNAs during somatic embryogenesis of white spruce [Picea glauca (Moench) Voss] Planta 199:459–466; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Dong, J-Z.; Dunstan, D. I. Characterization of cDNAs representing five abscisic acid-responsive genes associated with somatic embryogenesis, in Picea glauca, and their responses to abscisic acid stereostructure. Planta 203:448–453; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Dong, J-Z.; Dunstan, D. I. Cloning and characterization of six embryogenesis-associated cDNAs from somatic embryos of Picea glauca and their comparative expression during zygotic embryogenesis. Plant Mol. Biol. 39:859–864; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Feirer, R. P. The biochemistry of conifer embryo development: amino acids, polyamines and storage proteins. In: Mohan Jain, S.; Gupta, P.; Newton, R. eds. Somatic embryogenesis in woody plants. Vol. 1. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1995; 317–336.

    Google Scholar 

  • Handley, L. Future uses of somatic embryogenesis in woody plantation species. In: Mohan Jain, S.; Gupta, P.; Newton, R. eds. Somatic embryogenesis in woody plants. Vol. 1. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1995; 415–434.

    Google Scholar 

  • Jain, S. M.; Dong, N.; Newton, R. J. Somatic embryogenesis in slash pine (Pinus elliottii) from immature embryo culture in vitro. Plant Sci. 65:233–241; 1989.

    Article  Google Scholar 

  • Jarvis, S. B.; Taylor, M. S.; MacLeod, M. R.; Davies, H. Cloning and characterization of the cDNA clones of three genes that are differentially expressed during domancy-breakage in the seeds of Douglas fir (Pseudotsuga menziesii). J. Plant Physiol. 147:559–566; 1996.

    CAS  Google Scholar 

  • Kapik, R. J.; Dinus, R. J.; Dean, J. F. D. Abscisic acid during zygotic embryogenesis in Pinus taeda. Tree Physiol. 15:405–409; 1995.

    Google Scholar 

  • Lashkari, D. A.; DeRisi, J. L.; McCusker, J. H.; Namath, A. F.; Gentile, C.; Hwang, S. Y.; Brown, P. O.; Davis, R. W. Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc. Natl. Acad. Sci. USA 94:13057–13062; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Liang, P.; Averboukh, L.; Pardee, A. B. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinement and optimization. Nucleic Acids Res. 21:3269–3275; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Liang, P.; Pardee, A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Lipshutz, R. J.; Fodor, S. P. A.; Gingeras, T. R.; Lockhart, D. J. High density synthetic oligonucleotide arrays. Nature/Genetics 21:20–24; 1998.

    Google Scholar 

  • Litvay, J. D.; Verma, D. C.; Johnson, M. A. Influences of a loblolly pine culture medium and its components on growth and somatic embryogenesis of the wild carrot. Plant Cell Rep. 4:325–328; 1985.

    Article  CAS  Google Scholar 

  • Marshall, A.; Hodgson, J. DNA chips: an array of possibilities. Nature Biotechnol. 16:27–31; 1998.

    Article  CAS  Google Scholar 

  • McCullough, L.; Dean, C. A. Beyond traditional tree improvement. TAPPI Biol. Sci. Symp., 19–23 October 1997, San Francisco, CA, Atlanta, GA: TAPPI Press; 1997; 189–190.

    Google Scholar 

  • Minocha, R.; Minocha, S. C.; Simola, L. K. Somatic embryogenesis and polyamines in woody plants. In: Mohan Jain, S.; Gupta, P.; Newton, R. eds. Somatic embryogenesis in woody plants. Vol. 1. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1995; 337–359.

    Google Scholar 

  • Minocha, R.; Smith, D. R.; Reeves, C.; Steele, K. D.; Minocha, S. C. Polyamine levels during the development of zygotic and somatic embryos of Pinus radiata. Physiol. Plant 105:155–164; 1999.

    Article  CAS  Google Scholar 

  • Misra, S. Molecular analysis of zygotic and somatic conifer embryos. In: Mohan Jain, S.; Gupta, P.; Newton, R. eds. Somatic embryogenesis in woody plants. Vol. 1. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1995; 119–142.

    Google Scholar 

  • Misra, S.; Chatthai, M.; Tranbarger, T. J.; Forward, B. S.; Kaukinen, K. H. Differentially regulated gene sets in Douglas fir seeds and somatic embryos. In: Ahuja, M. R.; Boerjan, W.; Neale, D. B. eds. Somatic cell genetics and molecular genetics of trees. Dordrecht, The Netherlands; Kluwer Academic Publishers; 1996; 197–204.

    Google Scholar 

  • Okamuro, J. K.; Goldberg, R. B. Regulation of plant gene expression. General principles in the biochemistry of plants, Vol. 15. San Diego, CA: Academic Press; 1989; 2–82.

    Google Scholar 

  • Panitz, R.; Borijuk, L.; Manteuffel, R.; Wobus, U. Transient expression of storage-protein genes during early embryogenesis of Vicia faba: synthesis and metabolization of vicilin and legumin in the embryo, suspensor and endosperm. Planta 196:765–774; 1995.

    Article  CAS  Google Scholar 

  • Pullman, G. S. Osmotic measurements of whole ovules during loblolly pine embryo development. TAPPI Biol. Sci. Symp., 19–23 October 1997, San Francisco, CA. Atlanta, GA: TAPPI Press; 1997; 41–48.

    Google Scholar 

  • Pullman, G. S.; Cairney, J.; Peter, G. Clonal forestry and genetic engineering: where we stand and future prospects and impacts. TAPPI J. 81:57–64; 1998.

    CAS  Google Scholar 

  • Pullman, G. S.; Webb, D. T. An embryo staging system for comparison of zygotic and somatic embryo development. TAPPI R&D Div. Biol. Sci. Symp., 3–6 October, Minneapolis, MN. Atlanta, GA: TAPPI Press: 1994; 31–34.

    Google Scholar 

  • Ramsey, G. DNA chips: state-of-the-arf. Nature Biotechnol. 16:40–44; 1998.

    Article  Google Scholar 

  • Rosok, O.; Odeberg, J.; Rode, M.; Stokke, T.; Funderud, S.; Smeland, E.; Lundeberg, J. Solid-phase method for differential display of genes expressed in hematopoietic stem-cells. Bio Techniques 21:114–121: 1996.

    CAS  Google Scholar 

  • Schena, M. Genome analysis with gene expression microarrays. Bio Essays 18:427–431; 1996.

    CAS  Google Scholar 

  • Schwartz, B. W.; Vernon, D. M.; Meinke, D. W. Development of the suspensor: differentiation, communication and programmed cell death during plant embryogenesis. In: Larkins, B. A.; Vasil, I. K. eds. Cellular and molecular biology of plant seed development (Advances in cellular and molecular biology of plants, Vol. 4). Dordrecht, The Netherlands: Kluwer Academic Publishers; 1997; 53–72.

    Google Scholar 

  • Schwartz, B. W.; Yeung, E. C.; Meinke, D. W. Disruption of morphogenesis and transformation of the suspensor in abnormal suspensor mutants of Arabidopsis. Development 120:3235–3245; 1994.

    CAS  Google Scholar 

  • Skriver, K.; Mundy, J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2:503–512; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Spurr, A. R. Histogenesis and organization of the embryo in Pinus strobus L. Am. J. Bot. 36:629–641; 1949;

    Article  Google Scholar 

  • Tautorus, T. E.; Fowke, L. C.; Dunstan, D. I. Somatic embryogenesis in conifers. Can. J. Bot. 69:1873–1899; 1991.

    Google Scholar 

  • Teasdale, R. D.; Dawson, P. A.; Woolhouse, W. H. Mineral nutrient requirements of a loblolly pine (Pinus taeda) cell suspension culture. Evaluation of a medium formulated from seed composition data. Plant Physiol. 82:942–945; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, T. L. Gene expression during plant embryogenesis and germination: An overview. Plant Cell 5:1401–1410; 1993.

    Article  CAS  Google Scholar 

  • Tzfira, T.; Zuker, A.; Altman, A. Forest-tree biotechnology: genetic transformation and its application to future forests. Trends. Biotechnol. 16:439–446; 1998.

    Article  CAS  Google Scholar 

  • Xu, N.; Johns, B.; Pullman, G.; Cairney, J. Rapid and reliable differential display results from minute amounts of tissue: mass cloning and characterization of differentially expressed genes from loblolly pine embryos. Plant Mol. Biol. Rep. 15:377–391; 1997.

    Article  CAS  Google Scholar 

  • Yadegari, R.; de Paiva, G. R.; Laux, T.; Koltunow, A. M.; Apuya, N.; Simmerman, J. L.; Fischer, R. L.; Harada, J. J.; Goldberg, R. B. Cell differentiation and morphogenesis are uncoupled in Arabidopsis raspberry embryos. Plant Cell 6:1713–1729; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Yeung, E. C.; Meinke, D. W. Embryogenesis in angiosperms: development of the suspensor. Plant Cell 4:1371–1381; 1993.

    Article  Google Scholar 

  • Zhang, J. Z.; Sommerville, C. R. Suspensor derived polyembryony caused by altered expression of valyl-tRNA synthetase in the twn2 mutant of Arabidopsis. Proc. Natl. Acad. Sci. USA 94:7349–7355; 1997.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Cairney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cairney, J., Xu, N., Mackay, J. et al. Special symposium: In vitro plant recalcitrance transcript profiling: A tool to assess the development of conifer embryos. In Vitro Cell.Dev.Biol.-Plant 36, 155–162 (2000). https://doi.org/10.1007/s11627-000-0031-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-000-0031-5

Key words

Navigation