Skip to main content
Log in

Alteration of cytoskeletal structure, integrin distribution, and migratory activity by phagocytic challenge in cells from an ocular tissue—The trabecular meshwork

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The trabecular meshwork is a specialized tissue in the anterior chamber of the eye that regulates the aqueous humor outflow and controls the intraocular pressure. Cells in the trabecular meshwork are believed to be essential for maintenance of the outflow system, and their malfunctioning may lead to elevation of intraocular pressure and development of glaucoma. These cells are avid phagocytes. Using an in vitro tissue culture system, we have previously shown that bovine trabecular meshwork cells exhibited a short-term loss of cell-matrix adhesiveness after exposure to latex microspheres. The current study showed that 4 h after phagocytosis, the cytoskeletal structure in trabecular meshwork cells was disrupted, the formation of focal contact formation was limited, and the cellular migratory activity was increased. These in vitro responses paralleled those that occur in vivo. By 24 h, all the changes demonstrated returned to normal. Our data suggest that the short-term loss in cell-matrix cohesiveness observed after phagocytic challenge may be related to the reorganization of cytoskeletal structures and the decline of focal contact formation. The altered cell migration may also be interlinked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acott, T. S.; Wirtz, M. K. Biochemistry of aqueous outflow. In: Ritch, R.; Shields, M. B.; Krupin, T., ed. The glaucomas. 2nd edition, Vol. 1. St. Louis: Mosby; 1996:281–305.

    Google Scholar 

  2. Barak, M. H.; Weinreb, R. N.; Ryder, M. I. Quantitative assessment of cynomolgus monkey trabecular cell phagocytosis and adsorption. Curr. Eye Res. 7:445–448; 1988.

    PubMed  CAS  Google Scholar 

  3. Bill, A. The drainage of aqueous humor. Invest. Ophthalmol. Vis. Sci. 14:1–3; 1975.

    CAS  Google Scholar 

  4. Brown, E. J. Phagocytosis. BioEssays 17:109–117; 1995.

    Article  PubMed  CAS  Google Scholar 

  5. Buller, C.; Johnson, D. H.; Tschumper, R. C. Human trabecular meshwork phagocytosis: observations in an organ culture system. Invest. Ophthalmol. Vis. Sci. 31:2156–2163; 1990.

    PubMed  CAS  Google Scholar 

  6. Burridge, K.; Chrzanowska-Wodnicka, M. Focal adhesions, contractility and signaling. Annu. Rev. Cell Dev. Biol. 12:463–519; 1996.

    Article  PubMed  CAS  Google Scholar 

  7. Calthorpe, C. M.; Grierson, I. Fibronectin induces migration of bovine trabecular meshwork cells in vitro. Exp. Eye Res. 52:39–48; 1990.

    Article  Google Scholar 

  8. Chang, I. L.; Elner, S. G.; Yue, B. Y. J. T.; Cornicelli, A.; Kawa, J. E.; Elner, V. M. Expression of modified low-density lipoprotein receptors by trabecular meshwork cells. Curr. Eye Res. 10:1101–1112; 1991.

    PubMed  CAS  Google Scholar 

  9. Epstein, D. L.; Freddo, T. F.; Anderson, P. J.; Patterson, M. M.; Bassett-Chu, S. Experimental obstruction to aqueous outflow by pigment particles in living monkeys. Invest. Ophthalmol. Vis. Sci. 27:387–395; 1986.

    PubMed  CAS  Google Scholar 

  10. Ershov, A. V.; Lukiw, W. J.; Bazan, N. G. Selective transcription factor induction in retinal pigment epithelial cells during photoreceptor phagocytosis. J. Biol. Chem. 271:28458–28462; 1996.

    Article  PubMed  CAS  Google Scholar 

  11. Grierson, I.; Chisholm, I. A. Clearance of debris from the iris through the drainage angle of the rabbit’s eye. Br. J. Ophthalmol. 62:694–704; 1978.

    Article  PubMed  CAS  Google Scholar 

  12. Grierson, I.; Lee, W. R. Erythrocyte phagocytosis in the human trabecular meshwork. Br. J. Ophthalmol. 57:400–415; 1973.

    Article  PubMed  CAS  Google Scholar 

  13. Grierson, I.; Pay, J.; Unger, W. G.; Ahmed, A. Phagocytosis of latex microspheres by bovine trabecular meshwork cells in culture. Graefes Arch. Clin. Exp. Ophthalmol. 234:536–544; 1986.

    Article  Google Scholar 

  14. Gumbiner, B. M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357; 1996.

    Article  PubMed  CAS  Google Scholar 

  15. Higginbotham, E. J.; Yue, B. Y. J. T.; Crean, E.; Peace, J. Effects of ascorbic acid on trabecular meshwork cells in culture. Exp. Eye Res. 46:507–516; 1988.

    Article  PubMed  CAS  Google Scholar 

  16. Hynes, R. O. Integrins: versatility, modulation and signaling. Cell 69:11–25; 1992.

    Article  PubMed  CAS  Google Scholar 

  17. Johnson, D. H.; Richardson, T. M.; Epstein, D. L. Trabecular meshwork recovery after phagocytic challenge. Curr. Eye Res. 8:1121–1130; 1989.

    PubMed  CAS  Google Scholar 

  18. Juliano, R. L.; Haskill, S. Signal transduction from the extracellular matrix. J. Cell Biol. 120:577–585; 1993.

    Article  PubMed  CAS  Google Scholar 

  19. McDonald, P. P.; Cassatella, M. A. Activation of transcription factor NF-κB by phagocytic stimuli in human neutrophils. FEBS Lett. 412:583–586; 1997.

    Article  PubMed  CAS  Google Scholar 

  20. Ohlsson, K.; Linder, C.; Lundberg, E.; Axelsson, L. Release of cytokines and proteases from human peripheral blood mononuclear and polymorphonuclear cells following phagocytosis and LPS stimulation. Scand. J. Clin. Lab. Invest. 56:461–470; 1996.

    PubMed  CAS  Google Scholar 

  21. Palecek, S. P.; Loftus, J. C.; Ginsberg, M. H.; Lauffenburger, D. A.; Horwitz, A. F. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385:537–540; 1996.

    Article  Google Scholar 

  22. Polansky, J. R.; Alvarado, J. A. Cellular mechanisms influencing the aqueous humor outflow pathway. In: Albert, A. M.; Jakobiec, F. A., ed. Principles and practice of ophthalmology. Philadelphia: W. B. Saunders; 1994:226–251.

    Google Scholar 

  23. Rohen, J. W.; Van Der Zypen, E. The phagocytic activity of the trabecular meshwork endothelium: an electron microscopic study of the Vervet (Cercopithecus aethiops). Graefes Arch. Clin. Exp. Ophthalmol. 175:143–160; 1968.

    Article  CAS  Google Scholar 

  24. Sawaguchi, S.; Yue, B. Y. J. T.; Chang, I. L.; Wong, F.; Higginbotham, E. J. Ascorbic acid modulates collagen type I gene expression by cells from an eye tissue-trabecular meshwork. Cell. Mol. Biol. 38:587–604; 1992.

    PubMed  CAS  Google Scholar 

  25. Schwartz, M. A.; Schaller, M. D.; Ginsberg, M. H. Integrins: emerging paradigms of signal transduction. Annu. Rev. Cell Dev. Biol. 11:549–599; 1995.

    Article  PubMed  CAS  Google Scholar 

  26. Sherwood, M. E.; Richardson, T. M.; Epstein, D. L. Phagocytosis by trabecular meshwork cells: sequence of events in cats and monkeys. Exp. Eye Res. 46:881–895; 1988.

    Article  PubMed  CAS  Google Scholar 

  27. SundarRaj, N.; Anderson, S.; Barbacci-Tobin, E. An intermediate filament-associated developmentally regulated protein in corneal fibroblasts. Curr. Eye Res. 7:937–946; 1988.

    PubMed  CAS  Google Scholar 

  28. Van Buskirk, E. M.; Leure-Dupree, A. E. Pathophysiology and electron microscopy of melanomalytic glaucoma. Am. J. Ophthalmol. 85:160–166; 1978.

    PubMed  Google Scholar 

  29. Weiss, S. J.; LoBuglio, A. F. Biology of disease: phagocyte-generated oxygen metabolites and cellular injury. Lab. Invest. 47:5–18; 1982.

    PubMed  CAS  Google Scholar 

  30. Wu, C.; Keivens, V. M.; O’Toole, T. E.; McDonald, J. A.; Ginsberg, M. H. Integrin activation and cytoskeletal interaction are essential for the assembly of a fibronectin matrix. Cell 83:715–724; 1995.

    Article  PubMed  CAS  Google Scholar 

  31. Yue, B. Y. J. T. The extracellular matrix and its modulation in the trabecular meshwork. Surv. Ophthalmol. 40:379–390; 1996.

    Article  PubMed  CAS  Google Scholar 

  32. Yue, B. Y. J. T.; Elner, V. M.; Elner, S. G.; Davis, H. Lysosomal enzyme activities in cultured trabecular meshwork cells. Exp. Eye Res. 44:891–897; 1987.

    Article  PubMed  CAS  Google Scholar 

  33. Yue, B. Y. J. T.; Higginbotham, E. J.; Chang, I. L. Ascorbic acid modulates the production of fibronectin and laminin by cells from an eye tissue-trabecular meshwork. Exp. Cell Res. 187:65–68; 1990.

    Article  PubMed  CAS  Google Scholar 

  34. Yue, B. Y. J. T.; Kurosawa, A.; Elvart, J. L.; Tso, M. O. M. Monkey trabecular meshwork cells in culture: growth, morphologic and biochemical characteristics. Graefes Arch. Clin. Exp. Ophthalmol. 226:262–268; 1988.

    Article  PubMed  CAS  Google Scholar 

  35. Zhou, L.; Fukuchi, T.; Kawa, J. E.; Higginbotham, E. J.; Yue, B. Y. J. T. Loss of cell-matrix cohesiveness after phagocytosis by trabecular meshwork cells. Invest. Ophthalmol. Vis. Sci. 36:787–795; 1995.

    PubMed  CAS  Google Scholar 

  36. Zhou, L.; Li, Y.; Yue, B. Y. J. T. Glucocorticoid effects on the extracellular matrix proteins and integrins in bovine trabecular meshwork cells in relation to glaucoma. Int. J. Mol. Med. 1:339–346; 1998.

    PubMed  CAS  Google Scholar 

  37. Zhou, L.; Zhang, S. R.; Yue, B. Y. J. T. Adhesion of human trabecular meshwork cells to extracellular matrix proteins: roles and distribution of integrin receptors. Invest. Ophthalmol. Vis. Sci. 37:104–113; 1996.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Li, Y. & Yue, B.Y.J.T. Alteration of cytoskeletal structure, integrin distribution, and migratory activity by phagocytic challenge in cells from an ocular tissue—The trabecular meshwork. In Vitro Cell.Dev.Biol.-Animal 35, 144–149 (1999). https://doi.org/10.1007/s11626-999-0016-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-999-0016-6

Key words

Navigation