Skip to main content
Log in

Growth and phenotypic characterization of porcine coronary artery smooth muscle cells

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Vascular smooth muscle cell (VSMC) proliferation significantly contributes to atherosclerotic plaque formation and limits the success rate of percutaneous transluminal coronary angioplasty. We derived a population of porcine coronary artery SMCs to characterize VSMC proliferation and phenotype in preparation to study the molecular actions of VSMC mitogens and antiproliferative agents. Growth assays were designed to minimize the estrogen content in the culture medium, since this steroid hormone significantly influences VSMC growth and the expression of VSMC mitogens and their receptors. Culture conditions were identified such that this criterion was achieved while maintaining a significant VSMC growth rate. Cells cultured in serum-free medium, regardless of growth factor supplements, did not remain adherent to a plastic culture substrate, nor did they proliferate. Dextran-coated charcoal (DCC)-treated sera, including fetal bovine, calf, and porcine, supported VSMC adhesion, but not growth. Whole fetal bovine serum (FBS) produced the best proliferative response. A type-I collagen-coated culture surface significantly enhanced VSMC growth, but only in culture medium containing non-DCC-treated FBS. Flow cytometry analyses confirmed the mitogenic effects of this substrate. The VSMCs exhibited a morphological change on type-I collagen, but this was not accompanied by a change in VSMC phenotype. Our data indicate that culture of these porcine coronary artery SMCs in 2.5% FBS plus 10 ng platelet-derived growth factor-BB per ml in phenol red-free medium on type-I collagen may be the optimal conditions for studying the molecular aspects of VSMC mitogens and antiproliferative agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benecke, B.-J.; Ben Ze’ev, A.; Penman, S. The control of mRNA production, translation, and turnover in suspended and reattached anchorage-dependent fibroblasts. Cell 14:931–939; 1978.

    Article  PubMed  CAS  Google Scholar 

  2. Campbell, G. R.; Campbell, J. H.; Manderson, J. A.; Horrigan, S.; Rennick, R. E. Arterial smooth muscle. A multifunctional mesenchymal cell. Arch. Pathol. Lab. Med. 112:977–986; 1988.

    PubMed  CAS  Google Scholar 

  3. Cybulsky, A. V.; McTavish, A. J.; Cyr, M.-D. Extracellular matrix modulates epidermal growth factor receptor activation in rat glomerular epithelial cells. J. Clin. Invest. 94:68–78; 1994.

    PubMed  CAS  Google Scholar 

  4. Das, S. K.; Paria, B. C.; Andrews, G. K.; Dey, S. K. Effects of 9-enetetrahydrocannabinol on expression of beta-type transforming growth factors, insulin-like growth factor-I and c-myc genes in the mouse uterus. J. Steroid Biochem. Mol. Biol. 45:459–465; 1993.

    Article  PubMed  CAS  Google Scholar 

  5. Fager, G.; Hansson, G. K.; Gown, A. M.; Larson, D. M.; Skalli, O.; Bondjers, G. Human arterial smooth muscle cells in culture: inverse relationship between proliferation and expression of contractile proteins. In Vitro Cell. Dev. Biol. 25:511–520; 1989.

    Article  PubMed  CAS  Google Scholar 

  6. Farhat, M. Y.; Vargas, R.; Dingaan, B.; Ramwell, P. W. In vitro effect of oestradiol on thymidine uptake in pulmonary vascular smooth muscle cell: role of the endothelium. Br. J. Pharmacol. 107:679–683; 1992.

    PubMed  CAS  Google Scholar 

  7. Heldin, C. H.; Westermark, B. Signal transduction by the receptors for platelet-derived growth factor. J. Cell Sci. 96:193–196; 1990.

    PubMed  CAS  Google Scholar 

  8. Huet-Hudson, Y. M.; Chakraborty, C.; De, S. K.; Suzuki, Y.; Andrews, G. K.; Dey, S. K. Estrogen regulates the synthesis of epidermal growth factor in mouse uterine epithelial cells. Mol. Endocrinol. 4:510–523; 1990.

    PubMed  CAS  Google Scholar 

  9. Hwang, D. L.; Latus, L. J.; Lev-Ran, A. Effects of platelet-contained growth factors (PDGF, EGF, IGF-1, and TGF-β) on DNA synthesis in porcine aortic smooth muscle cells in culture. Exp. Cell Res. 200:358–360; 1992.

    Article  PubMed  CAS  Google Scholar 

  10. Hynes, R. O. Fibronectins. Sci. Am. 254:42–51; 1986.

    PubMed  CAS  Google Scholar 

  11. Martin, G. R.; Timpl, R. Laminin and other basement membrane components. Annu. Rev. Cell Biol. 3:57–85; 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Maxwell, L.; Gavin, J. B.; Barratt-Boyes, B. G. Uneven host tissue on growth and tissue detachment in stent mounted heart valve allografts and xenografts. Cardiovasc. Res. 23:709–714; 1989.

    Article  PubMed  CAS  Google Scholar 

  13. McCullagh, K. G.; Duance, V. C.; Bishop, K. A. The distribution of collagen types I, III and V (AB) in normal and atherosclerotic human aorta. J. Pathol. 130:45–55; 1980.

    Article  PubMed  CAS  Google Scholar 

  14. Mohanam, S.; Salomon, D. S.; Kidwell, W. R. Substratum modulation of epidermal growth factor receptor expression by normal mouse mammary cells. J. Dairy Sci. 71:1507–1514; 1988.

    Article  PubMed  CAS  Google Scholar 

  15. Owens, G. K. Regulation of differentiation of vascular smooth muscle cells. Physiol. Rev. 75:487–517; 1995.

    PubMed  CAS  Google Scholar 

  16. Saceda, M.; Lippman, M. E.; Chambon, P.; Lindsey, R. L.; Ponglikitmongkol, M.; Puente, M.; Martin, M. B. Regulation of the estrogen receptor in MCF-7 cells by estradiol. Mol. Endocrinol. 2:1157–1162; 1988.

    Article  PubMed  CAS  Google Scholar 

  17. Schwartz, S. M.; Campbell, G. R.; Campbell, J. H. Replication of smooth muscle cells in vascular disease. Circ. Res. 58:427–444; 1986.

    PubMed  CAS  Google Scholar 

  18. Stewart, A. J.; Johnson, M. D.; May, F. E. B.; Westley, B. R. Role of insulin-like growth factors and the type I insulin-like growth factor receptor in the estrogen-stimulated proliferation of human breast cancer cells. J. Biol. Chem. 265:21172–21178; 1990.

    PubMed  CAS  Google Scholar 

  19. Tsai, M. J.; O’Malley, B. W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem. 63:451–486; 1994.

    Article  PubMed  CAS  Google Scholar 

  20. van Rijk-Zwikker, G. L.; Delemarre, B. J.; Huysmans, H. A. Mitral valve anatomy and morphology: relevance to mitral valve replacement and valve reconstruction. J. Cardiovasc. Surg. 9:255–261; 1994.

    Google Scholar 

  21. Vargas, R.; Wroblewska, B.; Rego, A.; Hatch, J.; Ramwell, P. W. Oestradiol inhibits smooth muscle proliferation of pig coronary artery. Br. J. Pharmacol. 109:612–617; 1993.

    PubMed  CAS  Google Scholar 

  22. Vindelov, L. L.; Christensen, I. J.; Nissen, N. I. A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry 3:323–327; 1983.

    Article  PubMed  CAS  Google Scholar 

  23. Vogel, A.; Raines, E.; Kariya, B.; Rivest, M. J.; Ross, R. Coordinate control of 3T3 cell proliferation by platelet-derived growth factor and plasma components. Proc. Natl. Acad. Sci. USA 75:2810–2814; 1978.

    Article  PubMed  CAS  Google Scholar 

  24. Weinstein, R.; Stemerman, M. B.; Maciag, T. Hormonal requirements for growth of arterial smooth muscle cells in vitro: an endocrine approach to atherosclerosis. Science (Washington, DC) 212:818–820; 1981.

    Article  CAS  Google Scholar 

  25. Wissler, R. W. Principles of the pathogenesis of atherosclerosis. In: Heart disease: a textbook of cardiovascular medicine. Philadelphia: W. B. Saunders Company; 1984.

    Google Scholar 

  26. Yamamoto, M.; Fujita, K.; Shinkai, T.; Yamamoto, K.; Noumura, T. Identification of the phenotypic modulation of rabbit arterial smooth muscle cells in primary culture by flow cytometry. Exp. Cell Res. 198:43–51; 1992.

    Article  PubMed  CAS  Google Scholar 

  27. Yamamoto, M.; Yamamoto, K.; Noumura, T. Type I collagen promotes modulation of cultured rabbit arterial smooth muscle cells from a contractile to a synthetic phenotype. Exp. Cell Res. 204:121–129; 1993.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavigne, M.C., Ramwell, P.W. & Clarke, R. Growth and phenotypic characterization of porcine coronary artery smooth muscle cells. In Vitro Cell.Dev.Biol.-Animal 35, 136–143 (1999). https://doi.org/10.1007/s11626-999-0015-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-999-0015-7

Key words

Navigation